Search found 1 match

by Patricia
Sun Apr 19, 2009 9:58 pm
Forum: Clasa a VIII-a
Topic: Problema 2 , lista scurta 2009
Replies: 5
Views: 655

Pentru ca \( abc=1 \) putem face substitutiile \( a=\frac{x}{y} \) , \( b=\frac{y}{z} \) si \( c=\frac{z}{x} \). Inegalitatea din enunt devine \( \sum_{cyc}\frac{x^2}{2xy+y^2}\ge1 \). Din Cauchy (lema) obtinem \( \sum_{cyc}\frac{x^2}{2xy+y^2}\ge\frac{(x+y+z)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1 \) si de aici concluzia.

Go to advanced search