Radacinile unei ecuatii

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Radacinile unei ecuatii

Post by Beniamin Bogosel »

Fie \( n>3 \) natural si \( a \in \mathbb{R}, a > 2 \) si fie \( \alpha \) radacina ecuatiei \( x^n-ax^{n-1}+1=0 \) ce satisface \( 0< \alpha < 1 \). Aratati ca orice alta radacina nereala \( z \) satisface \( |z| <\alpha \).
Last edited by Beniamin Bogosel on Wed Jan 21, 2009 7:54 pm, edited 2 times in total.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

\( n\in? \), ca daca \( n\in\mathbb{N} \) atunci ecuatia nu are radacini nereale.
n-ar fi rau sa fie bine :)
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

\( f(1)=2-a<0,\ f(0)=1>0 \) deci ecuatia are o radacina reala in (0,1).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Nu la radacinile reale ma refeream, ci la cele nereale.
Din cate vad eu ecuatia este polinomiala, si cum \( n<3 \), este ori de gradul 1 ori de gradul 2. Nu inteleg unde privesc gresit.
n-ar fi rau sa fie bine :)
mychrom
Euclid
Posts: 16
Joined: Mon Oct 08, 2007 8:52 pm

Post by mychrom »

Cred ca n>3. :)
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Imi pare rau... numai acum am vazut... era \( n>3 \)
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Clasa a X-a”