TMMATE 2009, Problema 1

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

TMMATE 2009, Problema 1

Post by Laurian Filip »

Aratati ca pentru orice \( A\in M_2 (\mathbb{R}) \) are loc inegalitatea \( \tr(A^4) \leq (\tr(A^2))^2 \).

Andrei Eckstein
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

\( A^4=\tr{(A^2)}A^2-\det(A^2)I\Rightarrow \tr(A^4)=(\tr(A^2))^2-2(\det(A))^2\leq (\tr(A^2))^2 \)
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Daca \( \lambda_1 \) si \( \lambda_2 \) sunt valorile proprii ale matricei A (cazul real sau complex), atunci

\( \lambda_1^4+\lambda_2^4\le (\lambda_1^2+\lambda_2^2)^2 \)
Theodor Munteanu
Pitagora
Posts: 98
Joined: Tue May 06, 2008 5:46 pm
Location: Sighetu Marmatiei

Post by Theodor Munteanu »

De ce si cazul pentru valorile proprii complexe?
La inceput a fost numarul. El este stapanul universului.
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Pentru ca trebuie sa te folosesti de faptul ca sunt conjugate, altfel relatia nu ar fi adevarata. Ia de exemplu \( \lambda_1 =1+i \) si \( \lambda_2=1+2i \).
Post Reply

Return to “Algebra”