Inegalitate cu radicali de ordinul 8

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Inegalitate cu radicali de ordinul 8

Post by Mateescu Constantin »

Sa se demonstreze ca daca \( x,\ y,\ z\in(0,\ \infty) \) atunci are loc inegalitatea
\( \sqrt[8]{\frac{x+y+z}{3}}\ge \frac{\sqrt[8]{x}+\sqrt[8]{y}+\sqrt[8]{z}}{3} \).

Catalin Cristea
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Se foloseste Power Mean Inequality:

Functia

\( M_r=\(\frac{a_1^r+a_2^r+...+a_n^r}{n}\)^{\frac{1}{r}} \) \( r\neq 0 \) este strict crescatoare.
Post Reply

Return to “Clasa a IX-a”