Sa se determine functiile \( f:\mathbb{Q}\to \mathbb{Q} \) cu proprietatea:
\( f(x+y)+f(x-y)=f(x)+f(y)+f(f(x)-f(y)), \forall x, y \in \mathbb{Q} \).
Mihai Onucu Drimbe, "Nicolae Coculescu" 2007
Ecuatie functionala cu functii rationale
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
-
Andrei Velicu
- Euclid
- Posts: 27
- Joined: Wed Oct 17, 2007 9:20 am
- Location: Constanta
-
turcas
- Pitagora
- Posts: 83
- Joined: Fri Sep 28, 2007 1:48 pm
- Location: Simleu Silvaniei, jud Salaj
- Contact:
Re: determinarea functiilor rationale
\( f(x+y)+f(x-y)=f(x)+f(y)+f(f(x)-f(y)) \); (1)Andrei Velicu wrote:Sa se determine functiile \( f:\mathbb{Q}\to \mathbb{Q} \) cu proprietatea:
\( f(x+y)+f(x-y)=f(x)+f(y)+f(f(x)-f(y)), \forall x, y \in \mathbb{Q} \).
Mihai Onucu Drimbe, "Nicolae Coculescu" 2007
Daca inlocuim \( x=y=0 \) in (1), obtinem \( f(0)=0 \) si apoi daca punem \( y=0 \) in (1), obtinem \( f(f(x))=f(x) \) (2);
Punem acum \( x=0 \) in (1) si obtinem \( f(-f(y))=f(-y) \) (3);
Observam acum, luand cateva exemple \( x=y \) si inlocuind in ipoteza ca \( f(2x)=2f(x) \).
Se arata usor prin inductie ca \( f(nx)=n \cdot f(x), \forall n \in \mathbb{N}^{*}, x \in \mathbb{Q} \Longleftrightarrow f(\frac{x}{n})=\frac{1}{n}f(x). \)
Daca avem \( p,q \in \mathbb{N}^{*} \), atunci \( f(\frac{p}{q})=\frac{p}{q}f(1) \).
De asemenea \( f(-\frac{p}{q})=\frac{p}{q}f(-1) \).
Din cele de mai sus avem:
\( f(x)=\left\{\begin{array}{c} xf(1), \ x > 0 \\ -xf(-1), \ x <0 \end{array} \).
Se analizeaza cazurile \( f(1)>0, \ f(-1)>0, \ f(1)<0, \ f(-1)<0 \) si se obtin solutiile:
\( f(x)=|x|, \ f(x)=x, \ f(x)=-|x| \) si \( f(x)=0 \), care verifica ipoteza.