Concurs "Teodor Topan" - problema 1

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
maky
Pitagora
Posts: 80
Joined: Thu Sep 27, 2007 7:15 pm
Location: bucuresti

Concurs "Teodor Topan" - problema 1

Post by maky »

Sa se calculeze \( \lim_{n \to \infty}\left{\left(45+\sqrt{2007}\right)^n\right} \) unde \( a\in\mathbb{R} \) si \( \left{a\right} \) este partea fractionara a lui "a".
Tuduce Florian, Zalau
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Fie \( a=45+\sqrt{2007} \) si \( b=45-\sqrt{2007} \)

Deoarece \( a^n+b^n \in \mathbb{Z} \Leftrightarrow \{a^n\}+[a^n]+\{b^n\}+[b^n] \in \mathbb{Z} \Rightarrow \{a^n\}+\{b^n\}=1 \)(observand ca \( \{a} \) si \( \{b} \) nu pot fi 0)
Dar tinand cont de faptul ca \( b \in (0,1) \) avem
\( \lim_{n\rightarrow \infty} \{a^n\}= \lim_{n\rightarrow \infty} (1-b^n)=1 \)
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Analiza matematica”