Aproximare pentru o integrala

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Aproximare pentru o integrala

Post by Cezar Lupu »

Sa se arate ca \( \int_0^1 e^{x^{2}}dx>\frac{e}{2} \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Kunihiko Chikaya
Arhimede
Posts: 7
Joined: Sun Feb 03, 2008 7:06 pm
Location: Tokio

Post by Kunihiko Chikaya »

\( \int_0^1 e^{x^2}dx=\int_0^1 \frac{xe^{x^2}}{x}dx=\left[\frac{e^{x^2}}{2x}\right]_0^1 +\frac 12\int_0^1 \frac{e^{x^2}}{x^2}dx>\frac{1}{2}e. \)
aleph
Thales
Posts: 123
Joined: Mon Dec 24, 2007 2:06 am

Post by aleph »

Kunihiko Chikaya wrote:\( \int_0^1 \frac{xe^{x^2}}{x}dx=\left[\frac{e^{x^2}}{2x}\right]_0^1 +\frac 12\int_0^1 \frac{e^{x^2}}{x^2}dx \)
Toată lumea este de acord cu soluţia?

P.S. Se poate obţine o estimare mult mai strânsă în loc de \( e/2 \) şi anume \( \frac{9}{8}e^{1/4} \).
Post Reply

Return to “Analiza matematica”