Functie care la infinit nu are limita (Own).
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Functie care la infinit nu are limita (Own).
Sa se arate ca functia \( f(x)=\frac {1-\cot x}{e^x} \) nu are limita la \( \infty \) .
Last edited by Virgil Nicula on Fri Mar 14, 2008 11:38 pm, edited 1 time in total.
- Ciprian Oprisa
- Pitagora
- Posts: 55
- Joined: Tue Feb 19, 2008 8:01 pm
- Location: Lyon sau Cluj sau Baia de Cris
\( f(x)=\frac{\sin{x}-\cos{x}}{\sin{x}e^x} \)
Luam doua subsiruri care tind la \( \infty \):
\( x_n=(2n+\frac{1}{2})\pi \)
\( y_n=(2n+\frac{1}{e^{2n\pi}})\pi \)
Avem \( \lim\limits_{n\rightarrow\infty}f(x_n)=\lim\limits_{n\rightarrow\infty}\frac{\sin{\frac{\pi}{2}}-\cos{\frac{\pi}{2}}}{\sin{\frac{\pi}{2}}e^{(2n+\frac{1}{2})\pi}}=0 \)
\( \lim\limits_{n\rightarrow\infty}f(y_n)=
\lim\limits_{n\rightarrow\infty}
\frac
{\sin{\frac{\pi}{e^{2n\pi}}}-\cos{\frac{\pi}{e^{2n\pi}}}}
{\sin{\frac{\pi}{e^{2n\pi}}}e^{(2n+\frac{1}{e^{2n\pi}})\pi}}=
\lim\limits_{n\rightarrow\infty}\frac{
\sin{\frac{\pi}{e^{2n\pi}}}-\cos{\frac{\pi}{e^{2n\pi}}}}
{\frac{\sin{\frac{\pi}{e^{2n\pi}}}}{\frac{\pi}{e^{2n\pi}}}
e^{\frac{\pi}{e^{2n\pi}}}\pi}=-\frac{1}{\pi} \)
Si deci, obtinem limite diferite.
Luam doua subsiruri care tind la \( \infty \):
\( x_n=(2n+\frac{1}{2})\pi \)
\( y_n=(2n+\frac{1}{e^{2n\pi}})\pi \)
Avem \( \lim\limits_{n\rightarrow\infty}f(x_n)=\lim\limits_{n\rightarrow\infty}\frac{\sin{\frac{\pi}{2}}-\cos{\frac{\pi}{2}}}{\sin{\frac{\pi}{2}}e^{(2n+\frac{1}{2})\pi}}=0 \)
\( \lim\limits_{n\rightarrow\infty}f(y_n)=
\lim\limits_{n\rightarrow\infty}
\frac
{\sin{\frac{\pi}{e^{2n\pi}}}-\cos{\frac{\pi}{e^{2n\pi}}}}
{\sin{\frac{\pi}{e^{2n\pi}}}e^{(2n+\frac{1}{e^{2n\pi}})\pi}}=
\lim\limits_{n\rightarrow\infty}\frac{
\sin{\frac{\pi}{e^{2n\pi}}}-\cos{\frac{\pi}{e^{2n\pi}}}}
{\frac{\sin{\frac{\pi}{e^{2n\pi}}}}{\frac{\pi}{e^{2n\pi}}}
e^{\frac{\pi}{e^{2n\pi}}}\pi}=-\frac{1}{\pi} \)
Si deci, obtinem limite diferite.
Un lucru este ceea ce este, nu ceea ce pare a fi.