Inegalitate conditionata
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate conditionata
Daca \( a,b,c,d \in[0,1] \) astfel incat \( ab+bc+cd+da=2 \). Demonstrati ca \( a^n+b^n+c^n+d^n \leq 3 \), \( (\forall) n \in \mathbb{N}^* \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova
Avem \( ab+bc+cd+da=(b+d)(a+c) \). Deci, \( (b+d)(a+c)=2 \)\( \Longleftrightarrow\ a+c=\frac{2}{b+d} \)
Aratam in prima faza ca \( a+b+c+d\leq 3\Longleftrightarrow b+d+\frac{2}{b+d}\leq 3\Longleftrightarrow (b+d)^2+2\leq 3(b+d)\Longleftrightarrow (b+d-1)^2\leq b+d-1 \) ceea ce este adevarat pentru ca \( 0\leq b+d-1\leq 1\ \ ;\ \ 0\leq b\leq 1 \) si \( 0\leq d\leq 1 \)
Avem \( a\leq 1\Longrightarrow a^n\leq a \)
\( b\leq 1\Longrightarrow b^n\leq b \)
\( c\leq 1\Longrightarrow c^n\leq c \)
\( d\leq 1\Longrightarrow d^n\leq d \)
Rezulta, prin insumare, ca \( a^n+b^n+c^n+d^n\leq a+b+c+d\leq 3 \)
Aratam in prima faza ca \( a+b+c+d\leq 3\Longleftrightarrow b+d+\frac{2}{b+d}\leq 3\Longleftrightarrow (b+d)^2+2\leq 3(b+d)\Longleftrightarrow (b+d-1)^2\leq b+d-1 \) ceea ce este adevarat pentru ca \( 0\leq b+d-1\leq 1\ \ ;\ \ 0\leq b\leq 1 \) si \( 0\leq d\leq 1 \)
Avem \( a\leq 1\Longrightarrow a^n\leq a \)
\( b\leq 1\Longrightarrow b^n\leq b \)
\( c\leq 1\Longrightarrow c^n\leq c \)
\( d\leq 1\Longrightarrow d^n\leq d \)
Rezulta, prin insumare, ca \( a^n+b^n+c^n+d^n\leq a+b+c+d\leq 3 \)