Shortlist ONM 2007

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Shortlist ONM 2007

Post by Marius Mainea »

Aratati ca pentru orice numere reale a,b,c>0 avem:

\( \frac{a^2+1}{b+c}+\frac{b^2+1}{c+a}+\frac{c^2+1}{a+b}\geq 3 \)

Shortlist ONM 2007
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Raspuns...

Post by Claudiu Mindrila »

Pentru inceput, din inegalitatea CBS avem ca: \( \Sigma \frac{a^2}{b+c} \geq \frac{a+b+c}{2} \). Tot din CBS avem ca \( \Sigma \frac{1}{b+c} \geq \frac{9}{2(a+b+c)}. \)
Prin adunarea acestor inegalitati obtinem ca \( \Sigma \frac{a^2}{b+c} \geq \frac{a+b+c}{2}+\frac{9}{2(a+b+c)} \geq 2 \sqrt{\frac{a+b+c}{2} \cdot \frac{9}{2(a+b+c)}}=2 \cdot \frac{3}{2}=3 \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Asa este . Este o problema usurica, dar buna pentru antrenament.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Uita-te la clasa a IX-a , poate este mai interesanta inegalitatea.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Vedeti si aici si aici pentru "perlele" SHL de la clasa a 8-a. Ultima este fara solutie cam de la initierea forumului :arrow:
Life is complex: it has real and imaginary components.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Este adevarat Filip , se compenseaza unele pe altele.
Post Reply

Return to “Clasa a VIII-a”