Aratati ca daca a,b,c sunt numere eale si \( ab+bc+ca=2 \) ,atunci
\( (a+b)^4(b+c)^4(c+a)^4\le 8(a^4+4)(b^4+4)(c^4+4) \)
Se poate realiza egalitatea?
Concursul,,Nicolae Paun'' 2004
Inegalitate conditionata
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Pentru orice \( x,y \in \mathbb{R} \) avem \( 2(x^2+y^2) \geq (x+y)^2( \Longleftrightarrow (x-y)^2 \geq 0) \).
Rezulta ca \( 2(a^4+4 ) \geq (a^2+2)^2=(a^2+ab+bc+ca)^2=((a+b)(a+c))^2 \). Scriind inegalitatile analoage si inmultindu-le rezulta cerinta problemei. Egalitatea are loc cand \( a=b=c \), adica \( a=b=c=\sqrt{\frac{2}{3}} \).
Rezulta ca \( 2(a^4+4 ) \geq (a^2+2)^2=(a^2+ab+bc+ca)^2=((a+b)(a+c))^2 \). Scriind inegalitatile analoage si inmultindu-le rezulta cerinta problemei. Egalitatea are loc cand \( a=b=c \), adica \( a=b=c=\sqrt{\frac{2}{3}} \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)