Matrice de ordin 3 nilpotente si care comuta intre ele

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Matrice de ordin 3 nilpotente si care comuta intre ele

Post by Cezar Lupu »

Fie \( A, B, C\in M_{3}(\mathbb{C}) \) trei matrice care comuta doua cate doua astfel incat
\( A^{3}=B^{3}=C^{3}=O_{3} \).
Sa se arate ca \( ABC=O_{3} \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Domnul profesor Ornea, in topicul http://www.mateforum.ro/viewtopic.php?t=431 , ne-a semnalat ca problema in cauza este un caz particular a unei teoreme al lui Engel. Totusi, nu strica nici o solutie elementara, un pic cam tehnica, ce-i drept. :)

Din \( XY=YX \) si \( X^3=Y^3=O_{3} \) se deduce imediat ca \( (X+Y)^{6}=O_{3} \) sau \( (X-Y)^{6}=O_{3} \), de unde vom avea \( (X+Y)^{3}=O_{3} \) sau \( (X-Y)^{3}=O_{3} \) pentru ca daca avem o matrice nilpotenta, atunci acea matrice ridicata la puterea ordinului ei va fi matricea nula. Apoi, daca \( X^3=Y^3=Z^3=O_{3} \) vom avea imediat ca
\( (X+Y+Z)^{3}=O_{3} \) sau \( (X+Y-Z)^{3}=O_{3} \) si analoagele. Acum, din identitatea (clasa 9-a)
\( (X+Y-Z)^{3}+(Y+Z-X)^{3}+(Z+X-Y)^{3}=(X+Y+Z)^{3}-24XYZ \) concluzia rezulta imediat.
Last edited by Cezar Lupu on Fri Jan 04, 2008 1:06 am, edited 1 time in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Algebra”