Page 4 of 6
Posted: Thu Dec 11, 2008 9:35 pm
by Quit
Problema 13
Sa afle cel mai mic numar natural de doua cifre cu proprietatea ca suma dintre patratul si cubul lui este un patrat perfect .
Posted: Thu Dec 11, 2008 10:17 pm
by Marcelina Popa
Dorobantu Razvan wrote:Ochii mei sunt varza... as vrea sa va arat tot ce am scris fara tex. Macar a meritat efortul?
A meritat

. Stii ce mai lipsea, ca sa fie chiar perfect? Sa adaugi ca x nu poate avea 3 cifre, fiindca atunci 99x+98 ar avea 5 cifre. Bine, asta iesea imediat, fiindca
\( 103\cdot 99+98=10197 \), deci are deja 5 cifre.
Posted: Thu Dec 18, 2008 9:51 pm
by Luiza
Eu pot sa particip ? Sunt clasa a cincea .
Posted: Fri Dec 19, 2008 11:19 pm
by Marcelina Popa
Sigur ca poti. Bine ai venit !

Posted: Sat Dec 20, 2008 4:30 pm
by Luiza
\( \overline{ab}^2+\overline{ab}^3=\overline{cd}^2 \Leftrightarrow \overline{ab}^2(\overline{ab}+1)=\overline{cd}^2 \Leftrightarrow (\overline{ab}+1)=\frac{\overline{cd}^2}{\overline{ab}^2} \Leftrightarrow (\overline{ab}+1)=(\frac{\overline{cd}}{\overline{ab}})^2 \).
Cel mai mic patrat perfect de doua cifre este 16 rezulta ca \( \overline{ab}=15 \) .
Trebuie sa postez alta problema ?
Posted: Sun Dec 21, 2008 8:11 pm
by miruna.lazar
da , posteaza
Posted: Sun Dec 21, 2008 8:52 pm
by Luiza
Problema 14
Sa se determine numarul \( \overline{xyz} \) astfel incat \( \overline{xyz0}+\overline{xyz}=2002 \) .
Posted: Wed Dec 24, 2008 1:02 pm
by Quit
\( x\ y\ z\ 0+ \)
\( \ \ \ \underline{x\ y\ z} \)
\( \ 2\ 0\ 0\ 2 \)
\( \Rightarrow z=2 \)
\( x\ y\ 2\ 0+ \)
\( \ \ \ \underline{x\ y\ 2} \)
\( \ 2\ 0\ 0\ 2 \)
\( \Rightarrow y=8 \)
\( x\ 8\ 2\ 0+ \)
\( \ \ \ \underline{x\ 8\ 2} \)
\( \ 2\ 0\ 0\ 2 \)
\( \Rightarrow x=1 \)
\( \Rightarrow \) \( \overline{xyz}=182 \)
Posted: Wed Dec 24, 2008 10:33 pm
by Quit
Problema 15
Catul impartirii numerelor naturale a si b este 5 , iar restul este 6 . Aratati ca \( a+b \ge 48 \) . Pentru care numere a si b avem egalitate ?
Posted: Fri Dec 26, 2008 6:09 pm
by Marcelina Popa
Luiza wrote:\( (\overline{ab}+1)=(\frac{\overline{cd}}{\overline{ab}})^2 . \)
Cel mai mic patrat perfect de doua cifre este 16 rezulta ca \( \overline{ab}=15 \)
Rezolvarea este, in mare, ok, dar ai folosit, implicit, urmatoarea proprietate:
"Fie n, x si y numere naturale, x si y patrate perfecte, cu proprietatea ca nx=y. Atunci si n este patrat perfect."
Nu e deloc o afirmatie evidenta. Se demonstreaza folosind descompuneri in factori primi, care se invata in clasa a VI-a. Alta metoda foloseste cunostinte si mai avansate: o teorema despre radicalul unui numar natural, care se invata in clasa a VII-a.
Problema nu se ia in considerare pentru concurs (vezi regulamentul concursului, postat pe prima pagina a topicului), insa merita postata din nou la Olimpiada - clasa a V-a sau a VI-a, pentru ca e o problema frumoasa. Plus ca proprietatea de mai sus poate fi utila si in alte probleme (trebuie, insa, demonstrata !).
Posted: Sat Dec 27, 2008 3:02 pm
by Luiza
\( a=5b+6 \)
\( b>6 \Rightarrow b\ge 7 \Rightarrow 5b\ge 35 \Rightarrow 5b+6 \ge 41 \Rightarrow a\ge 41 \Rightarrow a+b \ge 48 \)
Egalitatea are loc cand \( b=7 \) .
Posted: Sat Dec 27, 2008 3:07 pm
by Luiza
Problema 15
Sa se determine numarul natural de forma \( \overline{ab} \) (in baza 10) pentru care : \( \overline{ab}=5a+3b \)
Posted: Sat Dec 27, 2008 5:51 pm
by miruna.lazar
Il scriem pe \( \overline{ab} \) in baza 10.
10a + b = 5a + 3b / - b
10a = 5a + 2b / - 5a
5a= 2b => a = 2 , b= 5 => \( \overline{ab} =25 \)
Problema 16 (own )
Care este rezultatul produsului :
\( ( 10 000 - 1^4 ) \cdot ( 10 000 - 2^4 ) \cdot ( 10 000 - 3^4 )\cdot .... \cdot ( 10 000 - 10^4 ) ? \)
Posted: Sat Dec 27, 2008 7:20 pm
by Quit
\( (10000-1^4)\cdot(10000-2^4)\cdot...\cdot(10000-10^4)=(10000-1^4)\cdot(10000-2^4)\cdot...\cdot(10000-10000)=(10000-1^4)\cdot(10000-2^4)\cdot...\cdot0=0 \)
Posted: Sat Dec 27, 2008 7:30 pm
by Quit
Problema 17
Fie numarul \( p=13+13^2+13^3+13^4+...+13^{2000} \) . Aratati ca este divizibil prin 10 grupand termenii in doua moduri .
Merge chiar in trei moduri , dar al treilea mod se aseamana putin cu unul din primele doua .
Posted: Sat Dec 27, 2008 8:26 pm
by Quit
Stiu ca in clasa a V-a nu se invata despre numerele intregi , dar la nivelul clasei a VI-a problema 16 ar fi fost mai frumoasa astfel :
Care este rezultatul produsului \( (10000-1^4)\cdot(10000-2^4)\cdot...\cdot(10000-n^4) \)
Vreau sa spun ca astfel nu s-ar mai vedea atat de repede ca produsul este 0 .
Posted: Sun Dec 28, 2008 2:49 pm
by Luiza
Solutia 1)
\( 13+13^2+13^3+13^4+...+13^{2000}=13+169+\overline{...7}+\overline{...1}+13^4(13+169+\overline{...7}+\overline{...1})+...+13^{1996}(13+169+\overline{...7}+\overline{...1})=\overline{...0}+13^4\cdot \overline{...0}+...+13^{1996}\cdot \overline{...0}=\overline{...0}(1+13^4+...+13^{1996}) \)
Solutia 2) \( 13+13^2+13^3+13^4+...+13^{2000}=13+13^3+13^2+13^4+...+13^{1997}+13^{1999}+13^{1998}+13^{2000}=13(1+169)+13^2(1+169)+...+13^{1997}(1+169)+13^{1998}(1+169)=170(13+13^2+13^5+13^6+...+13^{1997}+13^{1998}) \)