Page 1 of 1

det(A^4+I_n) diferit de 13

Posted: Mon Feb 04, 2008 8:48 pm
by Cezar Lupu
Fie \( A\in M_{n}(\mathbb{Z}) \). Sa se arate ca \( \det(A^4+I_{n})\neq 13 \).

Marius Cavachi

Posted: Wed Feb 06, 2008 1:09 pm
by Cezar Lupu
Solutie.

Vom utiliza descompunerea \( x^4+1=(x^2+\sqrt{2}x+1)(x^2-\sqrt{2}x+1) \). Astfel
\( \det(A^4+I_{n})=\det(A^2+\sqrt{2}A+I_{n})\det(A^2-\sqrt{2}A+I_{n}) \).
Acum, daca luam matricea \( B=(a_{ij}+\sqrt{2}b_{ij})_{1\leq i, j\leq n} \) si matricea conjugata \( \overline{B} =(a_{ij}-\sqrt{2}b_{ij})_{1\leq i, j\leq n} \), atunci folosind proprietatile conjugatei vom avea ca \( \det(A^2+\sqrt{2}A+I_{n}) \) va fi de forma \( a+b\sqrt{2} \) cu \( a, b\in\mathbb{Z} \), iar \( \det(A^2-\sqrt{2}A+I_{n}) \) va fi de forma \( a-b\sqrt{2} \) cu \( a, b\in\mathbb{Z} \).
Astfel, problema se reduce la a arata ca ecuatia \( a^2-2b^2=13 \) nu are solutii in \( \mathbb{Z} \). Acest lucru nu se arata foarte greu. Este clar ca \( a \) este impar, iar patratul unui numar impar este \( M_{8}+1 \). Acum luam doua cazuri:

i) daca \( b \) este par, atunci \( 2b^2 \) este \( M_{8} \), de unde vom avea ca \( M_{8}+1+M_{8}=13=M_{8}+5 \), fals.

ii) daca \( b \) este impar, atunci \( M_{8}+1-2(M_{8}+1)=13 \), de unde vom obtine contradictia \( M_{8}-1=M_{8}+5 \). \( \qed \)

Posted: Wed Feb 06, 2008 9:25 pm
by bae
Cezar Lupu wrote:Astfel, problema se reduce la a arata ca ecuatia \( a^2-2b^2=13 \) nu are solutii in \( \mathbb{Z} \). Acest lucru nu se arata foarte greu.
Ba se arata foarte usor, dupa cum ai dovedit chiar tu! :)

Alt argument: trecem ecuatia in \( \mathbb{Z}_{13} \) (sau modulo 13, daca se prefera) si ramane sa aratam ca ecuatia \( x^2=2 \) nu are solutii in \( \mathbb{Z}_{13} \) (sau ca 2 nu e rest patratic modulo 13), ceea ce este trivial.