Page 1 of 1

Egalitate integrala si ecuatie cu cel putin trei solutii

Posted: Mon Feb 18, 2008 3:54 am
by bae
Fie \( f:[0,1]\to \mathbb{R} \) o functie continua pentru care

\( \int_0^1f(x)dx=\int_0^1f(x^2)dx \).

Sa se arate ca ecuatia

\( f((\frac{1-x}{2})^2)=f((\frac{1+x}{2})^2) \)

are cel putin trei solutii reale.

GM 4/2002

Posted: Sun Dec 28, 2008 2:01 pm
by Marius Mainea
Cu schimbarea de variabila \( x=y^2 \) in stanga obtinem

\( \int_0^1(2x-1)f(x^2)dx=0 \).

Apoi cu schimbarea \( x=\frac{1-z}{2} \)

\( \int_{-1}^1xf((\frac{1-x}{2})^2)dx=0 \), si de aici folosind

formula de integrare pe un interval centrat in origine \( \int_{-a}^af(x)dx=\int_0^a(f(x)+f(-x))dx \),

obtinem

\( \int_0^1x(f((\frac{1-x}{2})^2)-f((\frac{1+x}{2})^2))dx=0 \).

Apoi aplicand teorema de medie exista \( c\in(0,1) \) astfel incat \( f((\frac{1-c}{2})^2)=f((\frac{1+c}{2})^2) \).

Asadar ecuatia are cel putin solutiile \( 0,\ c,\ -c \).