Page 1 of 1
Inegalitate conditionata
Posted: Fri Mar 07, 2008 12:11 am
by Radu Titiu
Daca Fie a,b,c numere reale strict pozitive a.i. \( a^3+b^3+3c=5 \). Aratati ca:
\( \sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \)
Posted: Mon Mar 10, 2008 2:30 pm
by Marius Dragoi
O idee, ceva...

Re: Inegalitate conditionata
Posted: Mon Mar 24, 2008 9:02 am
by Radu Titiu
Svejk wrote:Daca Fie a,b,c numere reale strict pozitive a.i. \( a^3+b^3+3c=5 \). Aratati ca:
\( \sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \)
Din inegalitatea Cauchy avem
\( \sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\leq \sqrt{2(a+b+c)\left( \frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\right)} \leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \Leftrightarrow \)
\( a+b+c \leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \)(*)
Dar din conditia initiala avem :
\( 9=(a^3+2)+(b^3+2)+3c\geq 3(a+b+c) \)
Deci
\( a+b+c \leq 3 \)
Mai mult din inegalitatea Cauchy avem de asemenea :
\( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}\geq 3 \)
Asadar relatia (*) este adevarata deoarece
\( a+b+c \leq 3\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \)