Comportarea "produsului" a doua inegalitati
Posted: Tue Mar 11, 2008 12:37 pm
Se stie ca \( \left\|\ \begin{array}{ccc}
(b+c)^2 & \le & 2(b^2+c^2)\\\\
2(b^4+c^4) & \ge & (b^2+c^2)^2\end{array}\ \right\|\ \) . Sa se arate ca \( \underline {\overline {\left|\ bc\ \ge\ 0\ \Longrightarrow\ (b+c)^2(b^4+c^4)\ \ge\ (b^2+c^2)^3\ \right|}} \) .
(b+c)^2 & \le & 2(b^2+c^2)\\\\
2(b^4+c^4) & \ge & (b^2+c^2)^2\end{array}\ \right\|\ \) . Sa se arate ca \( \underline {\overline {\left|\ bc\ \ge\ 0\ \Longrightarrow\ (b+c)^2(b^4+c^4)\ \ge\ (b^2+c^2)^3\ \right|}} \) .