mateforum.ro
MateForum
http://www.mateforum.ro/
Functie neinjectiva
http://www.mateforum.ro/viewtopic.php?t=1327
Page
1
of
1
Functie neinjectiva
Posted:
Fri Mar 14, 2008 11:06 am
by
Razvan Balan
Exista functii injective
\( f:R\to R \)
astfel incat
\( f(x^2)-f^2(x)\geq \frac{1}{4} \)
, oricare ar fi numarul real x?
Titu Andreescu
Posted:
Fri Mar 14, 2008 11:11 am
by
Bogdan Cebere
Pentru x=1 avem
\( 0\geq({f(1)-\frac{1}{2}})^2 \)
.
Pentru x=0 avem
\( 0\geq({f(0)-\frac{1}{2}})^2 \)
, deci
\( f(0)=f(1)={\frac{1}{2}} \)
.