Page 1 of 1
Concurs "Gheorghe Lazar" 2008, problema 1
Posted: Sat Mar 22, 2008 11:06 pm
by heman
Sa se demonstreze ca in triunghiul oarecare ABC avem inegalitatea:
cos\( \frac{A} {4} \)+cos\( \frac{B} {4} \)+cos\( (\frac{C} {4}+45^\circ) \) > \( \frac {3} {2} \).
Posted: Sun Mar 30, 2008 10:48 pm
by Beniamin Bogosel
Calculam
\( \frac{C}{4}+45^o=\frac{C+180^o}{4}=\frac{360^o-(A+B)}{4}=90^o-\frac{A+B}{4} \).
Deci, fiindca
\( \frac{A+B}{4}<\frac{\pi}{4} \) avem
\( \cos\left(\frac{C}{4}+45^o \right)=\sin(\frac{A+B}{4}) \)
Acum daca notam
\( 2x=\frac{A}{4},2y=\frac{B}{4} \) atunci inegalitatea de demonstrat devine:
\( \cos 2x+\cos 2y+\sin (2x+2y)>\frac{3}{2} \). Sa prelucram membrul drept:
\( 2\cos(x+y)\cos(x-y)+2\sin(x+y)\cos(x+y)=2\cos(x+y)[\cos(x-y)+\sin(x+y)] \).
\( x+y=\frac{A+B}{8}<\frac{\pi}{8}\Rightarrow \cos(x+y)>\frac{1}{2}\sqrt{2+\sqrt{2}}(=\cos\frac{\pi}{8}) \).
Deasemenea
\( \sin(x+y)+\cos(x-y)=(\sin x+\cos x)(\sin y+\cos y) \).
Avem
\( \sin x+\cos x > \sin^2 x+\cos^2 x=1 \). (strict pt ca nu se poate eg.)
Deci
\( \cos\frac{A}{4}+\cos\frac{B}{4}+\cos(\frac{C}{4}+45^o)=\cos 2x+\cos 2y+\sin(2x+2y)=2\cos(x+y)[\cos(x-y)+\sin(x+y)]>\\
>2\frac{1}{2}\sqrt{2+\sqrt{2}}[\cos(x-y)+\sin(x+y)]=\sqrt{2+\sqrt{2}}(\sin x+\cos x)(\sin y+\cos y)>\sqrt{2+\sqrt{2}}=1.847759065>\frac{3}{2}= \).
Majorarea e "un pic" mai buna. Si la ce majorari am facut, poate este una si mai buna.
Propun urmatoarea problema: se poate inlocui \( \sqrt{2+\sqrt{2}}=1.847759065 \) cu 2?? 