Rolle si determinanti
Posted: Mon Mar 24, 2008 10:09 pm
Fie \( f_{i}:[a,b]\rightarrow R ,i=\overline { o,n } \) n+1 functii continue pe [a,b] si derivabile pe (a,b).
Daca \( a\leq \alpha_{1}<\alpha_{2}<...<\alpha_{n}\leq b \) atunci pentru orice \( i=\overline { 0,n } , \exists c\in (\alpha_{i},\alpha_{i+1}) \) astfel incat
\( \left| \begin{array}{clr}
f_{0}^\prime(c) & f_{1}^\prime(c) & .. .&f_{n}^\prime(c) \\
f_{0}(\alpha_{1}) & f_{1}(\alpha_{1}) & .. .&f_{n}(\alpha_{1}) \\
...&...&...&...\\...&...&...&...\\
f_{0}(\alpha_{n})&f_{1}(\alpha_{n})&..&f_{n}(\alpha_{n})
\end{array} \right|=0
\)
Daca \( a\leq \alpha_{1}<\alpha_{2}<...<\alpha_{n}\leq b \) atunci pentru orice \( i=\overline { 0,n } , \exists c\in (\alpha_{i},\alpha_{i+1}) \) astfel incat
\( \left| \begin{array}{clr}
f_{0}^\prime(c) & f_{1}^\prime(c) & .. .&f_{n}^\prime(c) \\
f_{0}(\alpha_{1}) & f_{1}(\alpha_{1}) & .. .&f_{n}(\alpha_{1}) \\
...&...&...&...\\...&...&...&...\\
f_{0}(\alpha_{n})&f_{1}(\alpha_{n})&..&f_{n}(\alpha_{n})
\end{array} \right|=0
\)