Page 1 of 1

Ecuatie functionala gen Cauchy

Posted: Sat Apr 05, 2008 1:11 pm
by Edgar Dobriban
Sa se determine functiile derivabile \( f: R \to (-\infty,1) \) cu proprietatea \( f(1)=-1 \) si \( f(x+y)=f(x)+f(y)-f(x)f(y), \forall x,y \in R \) .

Concursul "Grigore Moisil" 2008, Problema 1

Posted: Sun Dec 28, 2008 1:13 pm
by Marius Mainea
Notam \( g(x)=\ln(1-f(x)) \) si ecuatia functionala devine \( g(x+y)=g(x)+g(y) \), \( g \) continua, deci \( g(x)=ax \) si \( f(x)=1-e^{ax} \).


Pentru x=1 obtinem \( a=\ln2 \) si \( f(x)=1-2^x \).