Page 1 of 1

Inegalitate integrala aproape clasica

Posted: Sat Apr 05, 2008 1:22 pm
by Edgar Dobriban
Fie \( n \in \mathbb{N},\ n>0 \) si \( f: [0,1] \to \mathbb{R} \) o functie continua cu proprietatea \( \int_0^1(1-x^n)f(x)dx=0 \). Sa se arate ca \( \int_0^1f^2(x)dx\geq 2(n+1)( \int_0^1f(x)dx)^2 \).

Concursul “Grigore Moisil” 2008, Problema 2

Posted: Sun Dec 28, 2008 2:39 pm
by Claudiu Mindrila
Subiectele din 2008 de la concursul "Grigore Moisil"(Cluj) le puteti gasi aici .

Posted: Sun Dec 28, 2008 4:31 pm
by Marius Mainea
Demonstram urmatoarea lema :

Daca n>0 si \( g:[0,1]\rightarrow\mathbb{R} \) integrabila astfel incat \( \int_0^1g(x)dx=\int_0^1x^ng(x)dx=1, \) atunci \( \int_0^1g^2(x)dx\ge 2(n+1). \)

Apoi notand \( g(x)=\frac{f(x)}{\int_0^1f(x)dx} \) (evident daca numitorul e nenul) aplicam lema si gata.

Demonstratia lemei:

Cautam polinomul \( P(x)=ax^n+b \) care verifica ipotezele lemei. Acesta este \( P(x)=\frac{(n+1)(2n+1)}{n}x^n-\frac{n+1}{n} \).

Apoi \( 0\le \int_0^1(g(x)-Px))^2dx=\int_0^1g(x)(g(x)-P(x))dx-\int_0^1P(x)(g(x)-P(x))dx=\int_0^1g^2(x)dx-(a+b) \).

Asadar \( \int_0^1g^2(x)dx\ge a+b=2(n+1). \)

Posted: Sun Oct 04, 2009 6:33 pm
by Laurentiu Tucaa
Sau mai simplu cam pe aceeasi idee:

Cum \( \int_0^1 f(x)dx=\int_0^1 x^nf(x)dx \) aplicand CBS functiei \( x^nf(x) \) rezulta \( (\int_0^1 f(x)dx)^2=(\int_0^1 x^nf(x)dx)^2\le \int_0^1 f^2(x)dx)\int_0^1 x^{2n}dx \) de unde avem concluzia.

Edit: avem \( \int_0^1 x^{2n}dx=\frac{x^{2n+1}}{2n+1}\|_0^1=\frac{1}{2n+1} \), adica \( (2n+1)(\int_0^1 f(x)dx)^2\le\int_0^1 f^2(x)dx. \)

Posted: Sun Oct 04, 2009 6:55 pm
by Marius Mainea
Pai nu prea ,,avem'' concluzia..... :(