Page 1 of 1
problema de trigo
Posted: Wed May 07, 2008 8:12 pm
by Laurian Filip
pentru \( a=arctg\frac{4}{3} \) sa se arate ca \( \frac{\pi}{a} \) este irational.
Posted: Wed May 07, 2008 9:08 pm
by Beniamin Bogosel
Se observa ca
\( \tan a=\frac{4}{3} \), de unde
\( \sin a=\frac{4}{5} \) si
\( \cos a=\frac{3}{5} \).
Presupunem
\( \frac{\pi}{a}=\frac{m}{n} \in \mathbb{Q}, m,n \in \mathbb{N}^* \)(pentru ca
\( a,\pi>0 \)). De aici
\( \tan (am)=\tan (n\pi)=0\Rightarrow \sin(am)=0\Rightarrow x^{m}\in \mathbb{R} \), unde
\( x=\frac{3}{5}+\frac{4}{5}i \).
Deci
\( (\frac{3+4i}{5})^m=(\frac{3-4i}{5})^m=r\in \mathbb{R} \). Daca inmultim egalitatile avem
\( r^{2}=1 \), deci
\( r \in \{-1,1\} \).
\( (3+4i)^m+(3-4i)^m=2r5^m (1) \).
Daca
\( a_n=(3+4i)^m+(3-4i)^m \) atunci
\( a_{n+1}=6a_n-25a_{n-1} \) si
\( a_{n+1}\equiv a_n \pmod 5 \).
Cum
\( a_1=6\equiv 1 \pmod 5 \) rezulta ca 5 nu divide
\( a_n \) pentru orice
\( n \). Contradictie cu
\( (1) \).
Deci
\( \frac{\pi}{a} \) este irational.
