Page 1 of 1

problema de trigo

Posted: Wed May 07, 2008 8:12 pm
by Laurian Filip
pentru \( a=arctg\frac{4}{3} \) sa se arate ca \( \frac{\pi}{a} \) este irational.

Posted: Wed May 07, 2008 9:08 pm
by Beniamin Bogosel
Se observa ca \( \tan a=\frac{4}{3} \), de unde \( \sin a=\frac{4}{5} \) si \( \cos a=\frac{3}{5} \).

Presupunem \( \frac{\pi}{a}=\frac{m}{n} \in \mathbb{Q}, m,n \in \mathbb{N}^* \)(pentru ca \( a,\pi>0 \)). De aici \( \tan (am)=\tan (n\pi)=0\Rightarrow \sin(am)=0\Rightarrow x^{m}\in \mathbb{R} \), unde
\( x=\frac{3}{5}+\frac{4}{5}i \).

Deci \( (\frac{3+4i}{5})^m=(\frac{3-4i}{5})^m=r\in \mathbb{R} \). Daca inmultim egalitatile avem \( r^{2}=1 \), deci \( r \in \{-1,1\} \).

\( (3+4i)^m+(3-4i)^m=2r5^m (1) \).
Daca \( a_n=(3+4i)^m+(3-4i)^m \) atunci \( a_{n+1}=6a_n-25a_{n-1} \) si \( a_{n+1}\equiv a_n \pmod 5 \).
Cum \( a_1=6\equiv 1 \pmod 5 \) rezulta ca 5 nu divide \( a_n \) pentru orice \( n \). Contradictie cu \( (1) \).

Deci \( \frac{\pi}{a} \) este irational. :)