Page 1 of 1

Polinoame ireductibile de orice grad

Posted: Thu Oct 04, 2007 10:31 pm
by Dragos Fratila
Demonstrati ca in \( \mathbb{Z}/p \mathbb{Z}[X] \) (unde p este prim) exista polinoame monice ireductibile de orice grad.

Deduceti apoi existenta corpurilor cu \( p^n \) elemente pentru orice p prim si n>0

Posted: Tue Oct 09, 2007 6:16 pm
by Tiberiu Popa
O demonstratie destul de interesanta se poate gasi aici:
http://www.mathlinks.ro/Forum/viewtopic.php?&t=30473