Page 1 of 1
Concursul 'Marian Tarina' 2008 pb 2
Posted: Mon May 19, 2008 1:28 pm
by Radu Titiu
Fie \( f: (0,\infty) \to (0,\infty) \) o functie marginita si \( p>0 \) un numar real fixat. Daca pentru orice \( \alpha >0 \) avem \( \lim_{x \to 0} \left (f(x)-\alpha f^p(\alpha x) \right)=0 \), sa se demonstreze ca \( \lim_{x \to 0} f(x)=0 \).
Posted: Mon May 19, 2008 4:11 pm
by Bogdan Cebere
Fie \( \alpha =2^p \). In acest caz \( \lim_{x \to 0} \left (f(x)-2^p f^p(2^p x) \right)=0 (1) \)
Fie \( \alpha = \frac{1}{2^p} \), atunci \( \lim_{x \to 0} \left (f(x)-\frac{1}{2^p} f^p(\frac{1}{2^p} x) \right)=0 \). Notam \( t= \frac{1}{2^p} x \) si relatia devine \( \lim_{x \to 0} \left (2^p f(t)- f^p(t) \right)=0 (2) \).Combinand limitele \( (1) \) si \( (2) \) obtinem ca \( \lim_{x \to 0} \left (f(x)- f^p( x) \right)=0 \) sau \( \lim_{x \to 0} f(x) \left (1- f^{p-1}(x) \right)=0 \).Daca \( \lim_{x \to 0} f^{p-1}(x)=1 \), atunci \( \lim_{x \to 0} f(x)=1 \) sau \( \lim_{x \to 0} f(x)=-1 \)(deoarece \( f \) reala).In aceste conditii,inlocuind in relatia din enunt, obtinem ca \( \lim_{x \to 0} \left (f(x)-\alpha f^p(\alpha x) \right)=1-\alpha \) sau cu\( \alpha-1 ,\forall \alpha \in R \), absurd. Rezulta ca \( \lim_{x \to 0} f(x)=0. \)
Posted: Mon May 19, 2008 5:02 pm
by Radu Titiu
Bogdan Cebere wrote: Notam \( t= \frac{1}{2^p} x \) si relatia devine \( \lim_{x \to 0} \left (2^p f(t)- f^p(t) \right)=0 (2) \).
Daca facem schimbarea aceea de variabila
\( t=\frac{x}{2^p} \) nu cumva rezulta
\( \lim_{t \to 0} \left(2^pf(t)-f^p\left( \frac{t}{2^p}\right) \right)=0 \) ?
Posted: Mon May 19, 2008 5:08 pm
by Bogdan Cebere
EDITED Intr-adevar e gresit

Posted: Mon May 19, 2008 6:24 pm
by Bogdan Cebere
Mai incerc o data
Avem
\( \lim_{x \to 0} \left (f(x)-\alpha f^p(\alpha x) \right)=0 (1) \)
Luam
\( \alpha \to \frac{1}{\alpha} \) si
\( x \to \alpha ^2 x \). Relatia devine
\( \lim_{x \to 0} \left (\alpha f(\alpha ^2 x)- f^p(\alpha x) \right)=0 \).Inmultim relatia cu
\( \alpha \) si avem
\( \lim_{x \to 0} \left (\alpha^2 f(\alpha ^2 x)-\alpha f^p(\alpha x) \right)=0 (2) \). Combinam (1) si (2) obtinem
\( \lim_{x \to 0} \left (f(x)-\alpha ^2 f(\alpha ^2 x) \right)=0 \). Prin inductie rezulta
\( \lim_{x \to 0} \left (f(x)-\alpha ^{2n} f(\alpha ^{2n } x) \right)=0 \). Alegem
\( \alpha \in (0,1) \) si folosind faptul ca f marginita, putem scrie
\( 0= \lim_{x \to 0}\lim_{n \to \infty} \left (f(x)-\alpha ^{2n} f(\alpha ^{2n } x) \right)=\lim_{x \to 0} f(x) \).
Posted: Mon May 19, 2008 7:41 pm
by aleph
Concluzia are loc chiar dacă relaţia din enunţ are loc doar pentru \( \alpha \in \{a,b\} \), unde \( a,b \) sunt două numere pozitive distincte date.