Page 1 of 1
Un sir de numere reale pozitive
Posted: Mon May 19, 2008 6:52 pm
by BogdanCNFB
Fie\( (a_n)_{n\ge 1} \) un sir de numere reale pozitive. Consideram sirul \( x_n=\frac{a_1+a_2+...+a_n}{n}-\sqrt[n]{a_1\cdot a_2\cdot ...\cdot a_n},\ n\ge 2. \)
Sa se arate ca sirul \( (nx_n)_{n\ge 2} \) este crescator.
Posted: Sat Jun 14, 2008 9:33 pm
by Marius Mainea
\( (n+1)x_{n+1}-nx_n=a_{n+1}-(n+1)\sqrt[n+1]{a_1a_2...a_{n+1}}+n\sqrt[n]{a_1a_2...a_n} \)
Notand \( x =\sqrt[n+1]{a_{n+1}} \) si \( y=\sqrt[n(n+1)]{a_1a_2...a_n} \) avem de aratat ca \( x^{n+1}-(n+1)y^nx+ny^{n+1}\geq0 \) pentru orice x,y pozitive.
Relatia de mai sus se scrie:\( (x-y)^2(x^{n-1}+2x^{n-2}y+3x^{n-3}y^2+...+ny^{n-1})\geq0 \) cere este evident adevarata.