inegalitate interesanta
Posted: Wed May 21, 2008 6:41 pm
Fie \( a,b,c\in R \) cu \( |a|>|b|\ge|c| \). Demonstrati ca:
\( \sqrt{\frac{a^2+b^2}{a^2-b^2}}+\sqrt{\frac{a^2+c^2}{a^2-c^2}}\ge 2(1+\frac{|bc|}{a^2}) \)
In ce caz are loc egalitatea?
ETAPA LOCALA 2008, DOLJ
\( \sqrt{\frac{a^2+b^2}{a^2-b^2}}+\sqrt{\frac{a^2+c^2}{a^2-c^2}}\ge 2(1+\frac{|bc|}{a^2}) \)
In ce caz are loc egalitatea?
ETAPA LOCALA 2008, DOLJ