Page 1 of 1

Shortlist ONM 2003

Posted: Mon May 26, 2008 10:22 am
by Claudiu Mindrila
Demonstrati inegalitatea \( \frac{(a+b)^3}{c}+\frac{(b+c)^3}{a}+\frac{(c+a)^3}{b} \geq 8(a^2+b^2+c^2). \)

Nicolae Papacu, lista scurta, 2003

Posted: Mon May 26, 2008 12:31 pm
by Beniamin Bogosel
O solutie ar fi urmatoarea:

\( \sum \frac{(a+b)^3}{c}=\sum \frac{a^3}{c}+\sum \frac{b^3}{c}+3\sum \frac{a^2b}{c}+3\sum \frac{ab^2}{c} \).

Acum din inegalitatea lui Cebasev a rearanjamentelor rezulta
\( \sum \frac{a^3}{c}\geq\sum a^2 \) si \( \sum \frac{b^3}{c}\geq\sum a^2 \).

Inegalitatea \( \sum \frac{a^2b}{c}+\sum \frac{ab^2}{c}\geq 2\sum a^2 \) e echivalenta cu \( \sum_{sym} a^3b^2\geq \sum_{sym} a^3bc \), care este adevarata conform inegalitatii lui Muirhead pentru tripletele \( (3,2,0) \geq (3,1,1) \).

Insumand acestea obtinem inegalitatea dorita. :)

Pentru inegalitatea lui Muirhead incercati cu google (nu am putut sa pun link...).

Posted: Mon May 26, 2008 10:09 pm
by Marius Mainea
marius mainea
Tripletele (\( \frac{(a+b)^2}{c^2}, \)\( \frac{(b+c)^2}{a^2}, \)\( \frac{(c+a)^2}{b^2}) \) si \( (a+b,b+c,c+a) \) sunt la fel orientate, deci putem aplica inegalitatea Cebasev.

Apoi cu CBS si medii rezulta inegalitatea dorita.

Posted: Tue Mar 30, 2010 9:45 pm
by salazar
O alta abordare:
\( \sum \frac{(a+b)^3}{c}=\sum \frac{(a+b)^4}{ac+bc}\ge(C.B.S)\frac{[(a+b)^2+(b+c)^2+(c+a)^2]^2}{2(ab+bc+ca)}\ge 8(a^2+b^2+c^2)\Longleftrightarrow (\sum a^2+\sum ab)^2\ge 4(\sum a^2)(\sum ab) \)
Notand \( \sum a^2=x \) si \( \sum ab=y \) ramane de demonstrat ca \( (x+y)^2\ge 4xy\Longleftrightarrow (x-y)^2\ge0 q.e.d \)
Edit: eu am gasit aceasta inegalitate propusa pentru clasa a VIII-a in 2003, cu a,b,c strict pozitive.