Page 1 of 1

Inegalitate by Vasile Popa

Posted: Wed Jun 11, 2008 1:35 pm
by BogdanCNFB
Fie \( p,n\in N^{*},n\ge 3 \). Sa se demonstreze inegalitatea:
\( (p-\frac{p-1}{n})\cdot (p-\frac{2p-1}{n})\cdot ... \cdot(p-\frac{pn-1}{n})>\frac{1}{n!} \)
si apoi sa se deduca inegalitatea \( (n!)^2>n^n \).

Posted: Sat Jul 12, 2008 9:05 pm
by Marius Damian
\( p-\frac{kp-1}{n}>\frac{1}{k}, \forall k= \overline{1,n}. \)