Page 1 of 1
JBTST IV 2008, problema 4
Posted: Sat Jun 14, 2008 10:29 am
by Marius Mainea
Sa se determine cea mai mare valoare reala a numarului k astfel incat \( (a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}-k)\geq k \), oricare ar fi numerele reale \( a, b,c\geq 0 \) cu \( a+b+c=ab+bc+ca \).
Posted: Sun Oct 19, 2008 6:10 pm
by Marius Dragoi
Notez \( a+b+c= S \)
Astfel inegalitatea devine:
\( S( \sum_{} {\frac {1}{S-a}} - k) \geq k \) \( \Leftrightarrow \) \( \frac {S}{S+1}(\sum_{} {\frac {1}{S-a}}) \geq k \)
Dar: \( \sum_{} {\frac {1}{S-a}} = \frac {S(S+1)}{S^2-abc} \) \( \Rightarrow \) \( \frac {S^2}{S^2-abc} \geq k \)
Asadar \( k_{max} = \frac {S^2}{S^2-abc} \)
Ceva mai concret ar fi: \( \frac {S^2}{S^2-abc}= \frac {S^2}{(a+b+c)(ab+bc+ca)-abc} =
\frac {S^2}{(S^3- \sum_{} {a^3})/3} = \frac {3S^2}{S^3 - \sum_{} {a^3}} \) \( \geq \frac {27}{8S} \) \( = \)
\( = \frac {27}{8(a+b+c)} \) deoarece \( \sum_{} {a^3} \geq \frac {1}{9}S^3 \)