Conditie non-standard (IMAR '05)

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Conditie non-standard (IMAR '05)

Post by Filip Chindea »

Fie \( a, b, c > 0 \) cu \( abc \ge 1 \). Aratati ca \( \sum \frac{1}{1 + b + c} \le 1 \).
Life is complex: it has real and imaginary components.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( abc=l\ge1 \) Notam \( A=\frac{a}{\sqrt[3]{l}} \) si analoagele. Avem ABC=1.

\( a\geq A\\\\b\ge B\\c\ge C \) si e suficient sa aratam ca \( \sum\frac{1}{1+A+B}\le1 \).
Post Reply

Return to “Inegalitati”