Page 1 of 1

Triunghi isoscel

Posted: Sat Jun 21, 2008 8:05 pm
by Marius Mainea
In triunghiul isoscel \( ABC (AB=AC) \), \( m(\angle A)=20^{\circ} \) fie \( E\in(AC) \) astfel incat \( m(\angle ABE)=30^\circ \) si \( F\in(AB) \) astfel incat \( EF=FC \)

Demonstrati ca triunghiul \( EFC \) este echilateral.

Concursul Arhimede 2007

Posted: Mon Jun 23, 2008 10:18 am
by Claudiu Mindrila
Sigur despre triunghiul \( ABC \) este vorba in concluzia problemei? :?:

Posted: Mon Jun 23, 2008 12:26 pm
by Marius Mainea
Claudiu Mindrila wrote:Sigur despre triunghiul \( ABC \) este vorba in concluzia problemei? :?:
Am modificat.

Posted: Sat Jun 28, 2008 3:20 pm
by Marius Dragoi
Fie \( N \in (AB) \) astfel incat \( \angle ECN = 60 \). Din ipoteza avem:\( \angle ABE = 30 \Rightarrow \angle EBC = \angle CEB = 50 \Rightarrow \) \( BC=CE \).
\( \Rightarrow \angle CBN = \angle CNB = 80 \) (se obtine din calcule) \( \Rightarrow NC = BC \) \( \Rightarrow \) \( \bigtriangleup CNE \) este isoscel (\( NC=CE \)) (1)
dar \( \angle ENC =60 \) (2)
Din (1) si (2) \( \Rightarrow \bigtriangleup ENC \) este echilateral.
Daca \( F \in (AN) \Rightarrow \angle FEC > 60 \) iar \( \angle FCE < 60 \) \( \Rightarrow EF \neq FC \)
Daca \( F \in (NB) \Rightarrow \angle FCE > 60 \) iar \( \angle FEC < 60 \Rightarrow EF \neq FC \).
Cum din ipoteza \( \bigtriangleup EFC \) este isoscel cu \( EF=FC \) \( \Rightarrow F=N \) este singura posibilitate \( \Rightarrow \bigtriangleup EFC \) este echilateral. 8)