Page 1 of 1
a,b, c \in [0,1]
Posted: Sun Jun 22, 2008 10:18 pm
by Marius Mainea
Demonstrati ca daca \( a,b,c \in [0,1] \) atunci:
\( \frac{a}{1+bc}+\frac{b}{1+ca}+\frac{c}{1+ab}+abc\leq \frac{5}{2} \)
Vasile Pop, Cluj ,Short List 2007
Posted: Mon Jun 23, 2008 8:22 pm
by Filip Chindea
Nici aceasta nu a fost chiar simpla, dar merge.
Avem \( a \le 1 \Rightarrow 1 + bc \ge 1 + abc \). Astfel, notand \( p := abc \in [0, 1], s := \sum a \),
\( \sum \frac{a}{1 + bc} + abc \le \sum \frac{a}{1 + abc} + abc = \frac{s}{1 + p} + p \).
Ultima este cel mult \( 5/2 \) daca si numai daca
\( 2s + 2p(1 + p) \le 5(1 + p) \Leftrightarrow 2p^2 - 3p + (2s - 5) \le 0 \),
echivalent cu
\( p \in \left[ \frac{3 - \sqrt{49 - 16s}}{4}, \frac{3 + \sqrt{49 - 16s}}{4} \right] \).
Insa \( s \le 3 \) implica faptul ca marginea din dreapta este cel putin \( 1 \), si ramane de verificat
\( 4p \ge 3 - \sqrt{49 - 16s} \).
Consideram \( s \) fixat. Daca \( s \le 2 \), atunci
\( 4p \ge 0 > 3 - \sqrt{49 - 16s} \).
Daca \( s > 2 \), \( p + 2 = (abc + 1) + 1 \ge a + bc + 1 \ge s \), iar
\( 4p \ge 4(s - 2) \stackrel{?}{>} 3 - \sqrt{49 - 16s} \) revine la
\( 49 - 16s \ge (11 - 4s)^2 \Leftrightarrow 2s^2 - 9s + 9 < 0 \Leftrightarrow s \in [3/2, 3] \), si cu aceasta solutia se incheie. Egalitatea are loc doar pentru \( a = b = c = 1 \).
PS. Inegalitatea \( \sum \frac{a}{1 + bc} \le \frac{3}{2} \) nu este adevarata - luati \( a = b = 1, \ c = 0 \) si membrul stang este \( 2 \), deci abordarea dinainte este sortita esecului.
Posted: Mon Jun 23, 2008 11:21 pm
by Marius Mainea
Filip , uite o solutie ,,frumoasa''.
Presupunem fara a restringe generalitatea ca a este cel mai mare dintre cele trei.
Avem:\( \frac{a}{1+bc}+abc\leq\frac{1}{1+bc}+bc\leq\frac{3}{2} \) (demonstrati )
Deasemenea \( \frac{b}{1+ca}+\frac{c}{1+ab}\leq\frac{b+c}{1+bc}\leq1 \) (demonstrati)
Posted: Mon Aug 11, 2008 9:59 pm
by Filip Chindea
Fie \( n \ge 2 \), \( M_n := [0, 1]^n \), \( f_n : M_n \rightarrow \mathbb{R} \), data de legea
\( f_n(x_1, ..., x_n) := \sum \frac{x_j}{1 + (x_1 \cdots x_n)/x_j} + x_1 \cdots x_n \).
Aratati rezultatul general
\( \max_{x \in M} f_n(x) = \left\{ \begin{array}{lr} 2, & n = 2 \\ 5/2, & n = 3 \\ n - 1, & n \ge 4 \end{array} \right. \)
Evident topic-ul este caz particular al celei de mai sus [ IMC Longlist ].
O solutie
Posted: Sun Sep 07, 2008 12:58 pm
by Claudiu Mindrila
Cred ca am gasit o a treia solutie pentru problema:
Sa remarcam ca \( \sum_{cyc}\frac{a}{bc+1}+abc \leq \sum_{cyc}\frac{a}{abc+1}+abc=\frac{a+b+c}{abc+1}+abc \).
Exploatand faptul ca \( a,b,c \in [0,1] \), avem ca \( (1-a)(1-b)+(1-c)(1-ab) \geq 0 \Longleftrightarrow abc+2 \geq a+b+c(*) \).
Problema revine acum la a arata ca \( \frac{a+b+c}{abc+1}+abc \geq \frac{5}{2} \Longleftrightarrow^{(*)} \frac{abc+2}{abc+1}+abc \leq \frac{5}{2} \Longleftrightarrow abc+1+\frac{1}{abc+1} \leq \frac{5}{2} \Longleftrightarrow \frac{(abc+1)^2+1}{abc+1} \leq \frac{5}{2} \).
Ramane deci de demonstrat ca \( 2(a^2b^2c^2+2abc+1)+2 \leq 5abc+5 \Longleftrightarrow 2a^2b^2c^2 \leq abc+1. \)
Intr-adevar, deoarece \( abc \leq 1 \Longrightarrow -2abc \geq -2 \Longrightarrow 1-2abc \geq 1+(-2)=-1 \),
de unde rezulta \( abc+1-2a^2b^2c^2= abc(1-2abc)+1 \geq 1\cdot (-1)+1=0 \Longleftrightarrow 2a^2b^2c^2 \leq abc+1 \)