Page 1 of 1

2abc+ab+bc+ca+1....

Posted: Tue Jun 24, 2008 6:08 pm
by Marius Mainea
Numerele reale pozitive a, b, c verifica relatia 2abc+ab+bc+ca=1. Sa se arate ca:

\( \sqrt {ab}+\sqrt {bc} +sqrt{ca}\leq \frac{3}{2} \).

Vasile Pop SHL 2005

Posted: Tue Jun 24, 2008 7:42 pm
by turcas
Conditia imi aduce aminte de o substitutie pe care eu o retin foarte usor facand legatura cu inegalitatea lui Nesbitt.

Existenta numerelor \( a,b,c \in \mathbb{R}_{+} \) care satisfac conditia din enunt \( 2abc+ab+bc+ca=1 \) implica existenta numerelor pozitive \( x,\ y,\ z \) astfel incat:

\( a = \frac{x}{y+z};\ b = \frac{y}{x+z};\ c = \frac{z}{x+y} \) .

Acum deconditionam inegalitatea si avem:

\( \sum_{cyc} \sqrt{\frac{xy}{(x+z)(y+z)}} \geq \frac{3}{2} \).

Acum aplicam inegalitatea \( GM \geq HM \) si anume

\( \sqrt{\frac{xy}{(x+z)(y+z)}} \geq 2 \frac{ \frac{x}{x+z} \cdot \frac{y}{y+z} }{\frac{x}{x+z} + \frac{y}{y+z} } = \frac{2xy}{2xy + yz + xz} \).

Notam cu \( s = xy+yz + zx \). Atunci daca adunam inegalitatile analoage, obtinute anterior (din \( GM \geq HM \)), ramane de demonstrat ca:

\( E= \frac{xy}{s+xy} + \frac{yz}{s+yz} + \frac{xz}{s+xz} \geq \frac{3}{4} \).

Din Cauchy, avem:

\( ( xy(s+xy) + yz(s+yz) +xz(s+xz) ) \cdot E \geq s^2 \) .

De aici, \( E \geq \frac{s^2}{s^2 + (xy)^2 + (yz)^2 +(xz)^2} \), trebuie sa aratam doar ca \( \frac{s^2}{s^2 + (xy)^2 + (yz)^2 +(xz)^2} \geq \frac{3}{4} \), adica \( s^2 \geq (xy)^2 + (yz)^2 +(xz)^2 \) care este evident.

Inegalitatea este demonstrata.

Posted: Thu Aug 07, 2008 11:26 pm
by Marius Mainea
turcas wrote: \( \frac{s^2}{s^2 + (xy)^2 + (yz)^2 +(xz)^2} \geq \frac{3}{4} \), adica \( s^2 \geq (xy)^2 + (yz)^2 +(xz)^2 \) care este evidenta.

Inegalitatea este demonstrata.
Nu prea este adevarat :?

De fapt enuntul este gresit in lista scurta. Trebuia

\( \sum {\sqrt{ab}}\le\frac{3}{2} \).

Posted: Fri Aug 08, 2008 10:21 am
by Claudiu Mindrila
Conform observatiei lui turcas, alegem \( a=\frac{x}{y+z},\ b=\frac{y}{z+x},\ c=\frac{z}{x+y} \). Problema revine la a arata ca daca \( x,y,z>0 \), atunci are loc inegalitatea:

\( \sqrt{\frac{xy}{(z+x)(z+y)}}+\sqrt{\frac{yz}{(x+y)(x+z)}}+\sqrt{\frac{zx}{(y+x)(z+y)}} \leq \frac{3}{2} \).

Aplicand inegalitatea \( AM-GM \) deducem ca \( LHS \leq \frac{\frac{x}{z+x}+\frac{y}{y+z}+\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{z+y}+\frac{x}{x+y}}{2}=\frac{3}{2} \).

Re: 2abc+ab+bc+ca+1....

Posted: Fri Aug 29, 2008 12:39 pm
by Cezar Lupu
Marius Mainea wrote:Numerele reale pozitive a, b, c verifica relatia 2abc+ab+bc+ca=1. Sa se arate ca:

\( \sqrt {ab}+\sqrt {bc} +sqrt{ca}\leq \frac{3}{2} \).

Vasile Pop SHL 2005
Alta solutie.

Relatia din ipoteza mai poate fi scrisa si sub urmatoarea forma:

\( 2\sqrt{ab}\sqrt{bc}\sqrt{ca}+(\sqrt{ab})^{2}+(\sqrt{bc})^{2}+(\sqrt{ca})^{2}=1 \).

Exista astfel \( A, B, C\in \left(0, \frac{\pi}{2}\right) \) astfel incat

\( \sqrt{ab}=\cos C, \sqrt{bc}=\cos A, \sqrt{ca}=\cos B \) deoarece este adevarata urmatoare identitate, i.e.

\( \cos^2 A+\cos^2 B+\cos^2 C+2\cos A\cos B\cos C=1 \).

Astfel concluzia problemei noastre s-a redus la urmatoarea inegalitate (valabila in orice triunghi ascutitunghic) cunoscuta si anume:

\( \cos A+\cos B+\cos C\leq\frac{3}{2}. \) \( \qed \)

Posted: Fri Aug 29, 2008 1:08 pm
by maxim bogdan
De fapt inegalitatea \( \cos A+\cos B+\cos C\le \frac{3}{2} \) este valabila pentru orice triunghi, deoarece

\( 3-2(\cos A+\cos B+\cos C)=(\sin A-\sin B)^2+(\cos A+\cos B-1)^2\ge 0 \).

Am folosit faptul ca \( \cos C=\cos(\pi-A-B)=-\cos(A+B)=-\cos A\cos B+\sin A \sin B \).

Posted: Sun Aug 31, 2008 1:31 am
by Cezar Lupu
maxim bogdan wrote:De fapt inegalitatea \( \cos A+\cos B+\cos C\le \frac{3}{2} \) este valabila pentru orice triunghi, deoarece

\( 3-2(\cos A+\cos B+\cos C)=(\sin A-\sin B)^2+(\cos A+\cos B-1)^2\ge 0 \).

Am folosit faptul ca \( \cos C=\cos(\pi-A-B)=-\cos(A+B)=-\cos A\cos B+\sin A \sin B \).
Sau, se poate demonstra ca \( \cos A+\cos B+\cos C=\frac{R+r}{R} \) si aplicand inegalitatea lui Euler, \( R\geq 2r \), vom obtine inegalitatea dorita.