Page 1 of 1

Functie Lipschitz si o inegalitate integrala

Posted: Tue Jun 24, 2008 9:04 pm
by Marius Mainea
Fie \( f:[0,1]\rightarrow\mathbb{R} \) o functie astfel incat \( |f(x)-f(y)|\leq |x-y| \) pentru orice \( x, y\in[0,1] \) si \( \int_0^1{f(x)dx}=0. \)
a) Aratati ca \( |\int_0^x{f(t)dt}|\leq\frac{1}{2}x(1-x) \) pentru orice \( x\in[0,1]; \)
b) Sa se determine f daca \( \int_0^{1/2}{f(x)dx}=\frac{1}{8}. \)

Dan Marinescu, Ioan Serdean, Shortlist ONM 2005