Doua inegalitati din Arhimede
Posted: Tue Jun 24, 2008 10:47 pm
\( 1. \)Fie \( a,b,c \in (0, \infty) \) si daca \( (abc)^3=2 \), sa se arate ca: \( \frac{1}{a^3(1+b^3)}+\frac{1}{b^3(1+c^3)}+\frac{1}{c^3(1+a^3)} \geq 1 \)
Marcel Chirita, Arhimede 5-8/2005
\( 2. \) Daca \( a,b,c \in [0,1] \), atunci are loc inegalitatea: \( \frac{a}{4+b^2+c^2}+\frac{b}{4+c^2+a^2}+\frac{c}{4+a^2+b^2} \leq \frac{1}{2} \)
Virgil Nicula, Arhimede 9-12/2005
Marcel Chirita, Arhimede 5-8/2005
\( 2. \) Daca \( a,b,c \in [0,1] \), atunci are loc inegalitatea: \( \frac{a}{4+b^2+c^2}+\frac{b}{4+c^2+a^2}+\frac{c}{4+a^2+b^2} \leq \frac{1}{2} \)
Virgil Nicula, Arhimede 9-12/2005