Page 1 of 1

Cate numere de forma...

Posted: Tue Jun 24, 2008 10:53 pm
by Claudiu Mindrila
Cate numere \( \overline{abcabc} \) se pot scrie sub forma \( \overline{abcabc}=n+2n+3n+...+90n \), unde \( n \) este numar natural?

Posted: Wed Oct 22, 2008 10:24 pm
by naruto
\( \overline{abcabc}=\overline{abc000}+\overline{abc}=1000\overline{abc}+\overline{abc}=1001\overline{abc} \)

\( n+2n+...90n=n(1+2+...+90)=4095n \)

\( \overline{abc}=4095n:1001 \)

mai departe nu stiu ce sa-i mai fac :roll:

luam pe cazuri? n=1, n=2, pana ce nu mai merge fiindca ies mai mult de 3 cifre?

Posted: Wed Oct 22, 2008 10:39 pm
by naruto
Ah, am zis o prostie . pot sa incerc pana maine. :oops:

Posted: Thu Oct 23, 2008 5:19 pm
by Claudiu Mindrila
naruto, esti foarte aproape de rezolvarea problemei.
\( n+2n+...+90n=1001 \cdot \overline{abc}\Longleftrightarrow n=\frac{1001 \cdot \overline{abc}}{1+2+...+90}=\frac{1001 \cdot \overline{abc}}{45 \cdot 91}=\frac{11 \cdot \overline{abc}}{45}\in \mathbb{N}. \)
Insa \( (45,91)=1 \Longrightarrow \overline{abc}=45 \cdot k(k\in \mathbb{N}) \). Cum \( \overline{abc} < 1000 \) evident \( k\in {3,4,5,...,22} \).
Sunt \( 20 \) de numere de forma \( \overline{abcabc} \) care verifica conditia problemei.

Posted: Thu Oct 23, 2008 9:02 pm
by naruto
Da... trebuie sa invat cum se face cu fractiile mai complicate. Parca sunt mai multe probleme in problema asta si eu am rezolvat-o pe prima :).