O alta inegalitate din lista scurta 2008
Posted: Sat Jun 28, 2008 1:23 pm
Se dau numerele reale \( x,y,z \geq 0 \). Sa se demonstreze inegalitatea
\( \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y} \geq \sqrt{2} \cdot \sqrt{2-\frac{7xyz}{(x+y)(y+z)(z+x)}} \)
Andrei Ciupan, Shortlist ONM 2008
\( \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y} \geq \sqrt{2} \cdot \sqrt{2-\frac{7xyz}{(x+y)(y+z)(z+x)}} \)
Andrei Ciupan, Shortlist ONM 2008