Page 1 of 1

Inegalitate cu logaritmi conditionata

Posted: Sat Jul 12, 2008 8:37 pm
by Radu Titiu
Daca \( a,b,c>0 \) si \( a+b+c=1 \) aratati ca:

\( \frac{a^2}{\log_a(a^2+b^2+c^2)}+\frac{b^2}{\log_b(a^2+b^2+c^2)}+\frac{c^2}{\log_c(a^2+b^2+c^2)}\geq \log_{abc}(a^2+b^2+c^2) \)

Posted: Sat Jul 12, 2008 9:48 pm
by Marius Mainea
Avem \( (\sum {a^2\log _{a^2+b^2+c^2}^a})(\sum {\log_{a^2+b^2+c^2}^a})\geq1 \)

Aplicand CBS \( LHS\geq(\sum {a\log_{a^2+b^2+c^2}^a})^2\geq (\log_{a^2+b^2+c^2}^{a^2+b^2+c^2})^2=1 \)


deoarece functia \( f(x)=\log_{a^2+b^2+c^2}^x \) este convexa, si aplicam inegalitatea lui Jensen.

\( f(ax+by+cz)\leq af(x)+bf(y)+cf(z) \) pentru a+b+c=1 cu a, b, c nenegative.