Inegalitate nice
Posted: Sun Aug 24, 2008 11:53 am
Daca \(
a,b,c \in (0; + \infty )
\), astfel incat \(
a^6 + b^6 + c^6 = 1
\), sa se arate ca: \(
\left( {a + b + c + d} \right)^2 \leq \frac{{b^2 c^2 d^2 }}
{{a^{10} }} + \frac{{a^2 c^2 d^2 }}
{{b^{10} }} + \frac{{a^2 b^2 d^2 }}
{{c^{10} }} + \frac{{a^2 b^2 c^2 }}
{{d^{10} }}
\).
Alexandru Negrescu, Axioma, nr. 23
a,b,c \in (0; + \infty )
\), astfel incat \(
a^6 + b^6 + c^6 = 1
\), sa se arate ca: \(
\left( {a + b + c + d} \right)^2 \leq \frac{{b^2 c^2 d^2 }}
{{a^{10} }} + \frac{{a^2 c^2 d^2 }}
{{b^{10} }} + \frac{{a^2 b^2 d^2 }}
{{c^{10} }} + \frac{{a^2 b^2 c^2 }}
{{d^{10} }}
\).
Alexandru Negrescu, Axioma, nr. 23