Page 1 of 1

Inegalitate nice

Posted: Sun Aug 24, 2008 11:53 am
by Claudiu Mindrila
Daca \(
a,b,c \in (0; + \infty )
\)
, astfel incat \(
a^6 + b^6 + c^6 = 1

\)
, sa se arate ca: \(
\left( {a + b + c + d} \right)^2 \leq \frac{{b^2 c^2 d^2 }}
{{a^{10} }} + \frac{{a^2 c^2 d^2 }}
{{b^{10} }} + \frac{{a^2 b^2 d^2 }}
{{c^{10} }} + \frac{{a^2 b^2 c^2 }}
{{d^{10} }}

\)
.

Alexandru Negrescu, Axioma, nr. 23

Posted: Sun Aug 24, 2008 7:29 pm
by Marius Mainea
\( LHS=\sum {\frac{(\frac{bcd}{a^2})^2}{a^6}\ge \frac{(\sum {\frac{bcd}{a^2})^2}}{\sum {a^6}} \) si e suficient sa aratam ca

\( \sum {\frac{bcd}{a^2}}\ge \sum {a} \) sau

\( \sum {\frac{1}{a^3}}\ge \sum {\frac{1}{bcd}} \) care este adevarata din inegalitatea ,,rearanjamentelor''.