Identitate in tetraedru
Posted: Fri Sep 05, 2008 8:37 pm
Fie \( ABCD \) un tetraedru in care \( \triangle BCD \) este echilateral, iar \( \triangle ACD \) este dreptunghic isoscel cu \( m( \angle CAD)=90^\circ \). Notam cu \( d_{A},d_{B},d_{C},d_{D} \) distantele de la varfurile \( A,B,C,D \) la planele opuse in tetraedrul dat. Aratati ca:
\( 3d^2_{A}+d^2_{B}+d^2_{C}+d^2_{D}=2d_{A}d_{B}\sqrt{3}+2d_{C}d_{D} \)
Gizela Pascale, Revista Minus 1/2008
\( 3d^2_{A}+d^2_{B}+d^2_{C}+d^2_{D}=2d_{A}d_{B}\sqrt{3}+2d_{C}d_{D} \)
Gizela Pascale, Revista Minus 1/2008