Page 1 of 1

Problema interesanta de geometrie

Posted: Mon Sep 22, 2008 9:20 pm
by Claudiu Mindrila
Fie \( ABC \) un triunghi oarecare cu \( M \) mijlocul laturii \( AB \) iar \( D \) piciorul bisectoarei din \( B \) pe \( AC \). Demonstrati ca daca \( MD \perp BD \), atunci \( AB=3BC \).

Gabriel Popa, OJM 2005

Posted: Sun Sep 28, 2008 12:56 pm
by Marius Dragoi
\( BD= \frac {2ac}{a+c} \cos {\frac{B}{2}} \) (1)

Dar \( \cos {\frac{B}{2}} = \frac {BD}{c/2} = \frac {2BD}{c} \) (2)

Din (1) si (2) avem \( BD = \frac {4a}{a+c} BD\Rightarrow c=3a \) QED

Posted: Fri Oct 17, 2008 2:31 pm
by abc
Iese si fara trigonometrie. Notam E intersectia dintre MD si BC. Triunghiul BEM este isoscel (bisectoarea e si inaltime) cu BM=BE. Aplicam teorema lui Menelaus pentru triunghiul BME si transversala AC => CB/CE=2 => BC=2/3*BE=2/3*BM=1/3*AB.

Re: Problema interesanta de geometrie

Posted: Fri Oct 17, 2008 5:14 pm
by Virgil Nicula
Va propun o problema care extinde usor problema de la judeteana.
Virgil Nicula wrote: Fie \( ABC \) un triunghi oarecare pentru care notam piciorul \( D \) al bisectoarei din \( B \) pe \( AC \).

Consideram punctul \( M\in (AB) \) pentru care \( DM\perp DB \). Demonstrati ca \( \frac {AM}{AB}=\frac {c-a}{c+a} \) .

Posted: Sat Oct 18, 2008 12:46 pm
by Virgil Nicula
Si acum va propun o generalizare mai larga ("urata", insa utila) a problemei initiale :
Virgil Nicula wrote:Fie triunghiul \( ABC \) si punctele \( \left\|\begin{array}{ccc}
M\in (BC) & , & \frac {MB}{MC}=m\\\\
N\in (AB) & , & \frac {NA}{NB}=n\end{array}\right\| \)
. Sa se arate ca


\( NM\perp NC\ \ \Longrightarrow\ \ (n+1)\cdot\left[(2mn-1)\cdot a^2+(2m+1)\cdot b^2\right]=(2mn+n-1)\cdot c^2 \) .
Urmeaza sa va "jucati" particularizand "m" si "n" pentru a obtine o relatie frumoasa intre a , b , c !

Posted: Fri Oct 24, 2008 8:37 pm
by Claudiu Mindrila
In legatura cu solutia lui Marius Dragoi.

Relatia folosita de Marius poate fi accesibila si unui elev de clasa a VII-a care cunoaste urmatoarea formula trigonometrica: \( \sin A=2 \sin\frac{A}{2}\cos \frac{A}{2} \).
Problema.
Fie \( ABC \) un triunghi oarecare si \( AD \) bisectoarea unghiului \( \angle BAC \). Aratati ca \( AD=\frac{2\cdot AB \cdot AC}{AB+AC}\cdot \cos\frac{A}{2}. \)
Solutie.
Avem urmatorul sir de echivalente \( S_{ABD}+S_{ACD}=S_{ABC} \Longleftrightarrow \frac{AB\cdot AD\cdot\sin\frac{A}{2}}{2}+\frac{AD\cdot AC\cdot\sin\frac{A}{2}}{2}=\frac{AB\cdot AC\cdot\sin A}{2}\Longleftrightarrow AD\cdot\sin\frac{A}{2}\left(AB+AC\right)=AB\cdot AC\cdot2\sin\frac{A}{2}\cos\frac{A}{2}
\Longleftrightarrow AD=\frac{2\cdot AB\cdot AC}{AB+AC}\cdot\cos\frac{A}{2} \)

Posted: Tue Apr 28, 2009 7:20 am
by salazar
Fie \( MN\parallel BC \) si \( MN\cap BD={E} \).
\( ME\parallel BC\Longrightarrow \angle EBC\equiv \angle MEB(1) \).
\( BE \) bisectoare\( \Longrightarrow \angle EBC\equiv\angle MBE(2) \).
-din \( (1),(2)\Longrightarrow\triangle MBE \) isoscel.
\( MD \) inaltime\( \Longrightarrow MD \) mediana, \( BD=DE \).
\( \triangle BDC\equiv\triangle NDE(U.L.U)\Longrightarrow ND=DC \).
\( NC=\frac{AC}{2}\Longrightarrow 2DC=AN,3DC=AN+ND=AD \).
-din \( T.B. \) in \( \triangle ABC\Longrightarrow \frac{AB}{BC}=\frac{CD}{DA}=\frac{1}{3}\Longrightarrow AB=3BC \) \( Q.E.D \).

Re: Problema interesanta de geometrie

Posted: Sat May 02, 2009 11:14 pm
by Virgil Nicula
Claudiu Mindrila wrote: Fie \( ABC \) un triunghi oarecare cu \( M \) mijlocul laturii \( AB \) iar \( D \) piciorul

bisectoarei din \( B \) pe \( AC \). Aratati ca daca \( MD \perp BD\ \Longleftrightarrow\ AB=3BC \).
Dem. Notam \( N\in (AB) \) pentru care \( ND\parallel BC \) . Se observa ca \( \widehat {NDB}\equiv\widehat {CBD}\equiv \widehat {NBD} \) ,

adica \( NB=ND \) . Deoarece \( DN\parallel BC \) obtinem \( \frac {AN}{AB}=\frac {DN}{BC}\ \Longleftrightarrow\ \frac {AN}{AB}=\frac {NB}{BC}\ (*) \) .

In concluzie, \( DM\perp DB\ \Longleftrightarrow\ NB=NM=DN=\frac c4\stackrel {(*)}{\ \Longleftrightarrow\ }\frac 34=\frac {\frac c4}{a}\ \Longleftrightarrow\ c=3a \) .