2 determinanti; demonstratie prin inductie si Vandermonde
Posted: Tue Oct 28, 2008 9:19 am
1. Aratati ca:
\(
\left| {\begin{array}{c}
x & y & z \\
{x^2 } & {y^2 } & {z^2 } \\
{yz} & {xz} & {xy} \\
\end{array}} \right| = (xy + yz + zx)(x - y)(y - z)(z - x)
\)
2. Demonstrati prin inductie(stiu ca e Vandermonde, dar demonstratia asta...):
\(
\left| {\begin{array}{c}
1 & 1 & 1 & \cdots & 1 \\
{a_1 } & {a_2 } & {a_3 } & \cdots & {a_n } \\
{a_1^2 } & {a_2^2 } & {a_3^2 } & \cdots & {a_n^2 } \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
{a_1^{n - 1} } & {a_2^{n - 1} } & {a_3^{n - 1} } & \cdots & {a_n^{n - 1} } \\
\end{array}} \right| = \prod\limits_{1 \le j \triangleleft i \le n} {(a_i - a_j )}
\)
La primul am incercat eu asa:\(
\begin{array}{l}
\left| {\begin{array}{c}
x & y & z \\
{x^2 } & {y^2 } & {z^2 } \\
{yz} & {xz} & {xy} \\
\end{array}} \right| = \frac{1}{{xyz}}\left| {\begin{array}{c}
{x^2 } & {y^2 } & {z^2 } \\
{x^3 } & {y^3 } & {z^3 } \\
{xyz} & {xyz} & {xyz} \\
\end{array}} \right| = \frac{{xyz}}{{xyz}}\left| {\begin{array}{c}
{x^2 } & {y^2 } & {z^2 } \\
{x^3 } & {y^3 } & {z^3 } \\
1 & 1 & 1 \\
\end{array}} \right| \\
= \left| {\begin{array}{c}
1 & 1 & 1 \\
{x^2 } & {y^2 } & {z^2 } \\
{x^3 } & {y^3 } & {z^3 } \\
\end{array}} \right| \\
\end{array}
\) dar...
\(
\left| {\begin{array}{c}
x & y & z \\
{x^2 } & {y^2 } & {z^2 } \\
{yz} & {xz} & {xy} \\
\end{array}} \right| = (xy + yz + zx)(x - y)(y - z)(z - x)
\)
2. Demonstrati prin inductie(stiu ca e Vandermonde, dar demonstratia asta...):
\(
\left| {\begin{array}{c}
1 & 1 & 1 & \cdots & 1 \\
{a_1 } & {a_2 } & {a_3 } & \cdots & {a_n } \\
{a_1^2 } & {a_2^2 } & {a_3^2 } & \cdots & {a_n^2 } \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
{a_1^{n - 1} } & {a_2^{n - 1} } & {a_3^{n - 1} } & \cdots & {a_n^{n - 1} } \\
\end{array}} \right| = \prod\limits_{1 \le j \triangleleft i \le n} {(a_i - a_j )}
\)
La primul am incercat eu asa:\(
\begin{array}{l}
\left| {\begin{array}{c}
x & y & z \\
{x^2 } & {y^2 } & {z^2 } \\
{yz} & {xz} & {xy} \\
\end{array}} \right| = \frac{1}{{xyz}}\left| {\begin{array}{c}
{x^2 } & {y^2 } & {z^2 } \\
{x^3 } & {y^3 } & {z^3 } \\
{xyz} & {xyz} & {xyz} \\
\end{array}} \right| = \frac{{xyz}}{{xyz}}\left| {\begin{array}{c}
{x^2 } & {y^2 } & {z^2 } \\
{x^3 } & {y^3 } & {z^3 } \\
1 & 1 & 1 \\
\end{array}} \right| \\
= \left| {\begin{array}{c}
1 & 1 & 1 \\
{x^2 } & {y^2 } & {z^2 } \\
{x^3 } & {y^3 } & {z^3 } \\
\end{array}} \right| \\
\end{array}
\) dar...