Page 1 of 1

3 inegalitati in triunghi

Posted: Fri Oct 31, 2008 6:01 pm
by BogdanCNFB
1) Sa se arate ca in orice triunghi avem:
\( R+r\geq\sqrt[3]{r_ar_br_c} \).

2)Sa se arate ca in orice triunghi avem:
\( \frac{a^2+b^2+c^2}{2rp}\geq\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C}\geq\frac{a^2+b^2+c^2}{Rp} \).

3)Fie ABC un triunghi ascutitunghic si K un punct interior lui. Notam cu \( \alpha,\beta,\gamma \) masurile unghiurilor BAK,CBK,ACK.
Sa se arate ca:
\( ctg^2\alpha+ctg^2\beta+ctg^2\gamma>3 \).

Posted: Fri Nov 14, 2008 12:50 pm
by Marius Mainea
2) \( \sum{\frac{1}{\sin A}}=\sum{\frac{2R}{a}}\ge \frac{2\cdot9R}{a+b+c}=\frac{9R^2}{Rp}\ge \frac{a^2+b^2+c^2}{Rp} \)