Page 1 of 1

Matrice cu suma elementelor zero

Posted: Sat Nov 08, 2008 3:12 pm
by Radu Titiu
Fie \( A \in \mathcal{M}_n(\mathbb{C}) \) o matrice cu proprietatea ca
\( S(A) = S(A^2) = \cdots = S(A^n) = 0 \),
unde \( S(A^k) \) este suma tuturor elementelor matricei \( A^k \), \( k = \overline{1,n} \). Sa se arate ca:

\( a) \) \( \det A = 0 \).

\( b) \) \( S(A^k) = 0 \), \( \forall k\in\mathbb{N}^* \).

\( c) \)Sa se dea exemplu de matrice nenula \( A \) cu proprietatea din enunt.

Concursul interjudetean Papiu, Tg Mures, 2008 (cls 12)

Posted: Sat Nov 22, 2008 1:30 pm
by Marius Mainea
Si la a) si la b) se foloseste ecuatia caracteristica

\( A^n-Tr(A)A^{n-1}+....+(-1)^ndetA=0_n \)

La c) exemplul este \( A=\left(\begin{array}{cc}B&0\\0&0\end{array}\right) \) unde B este matricea

\( B=\left(\begin{array}{cc}1&-1\\-1&1\end{array}\right) \)