Page 1 of 1
Suma... Calculeaz-o !
Posted: Sat Nov 08, 2008 7:21 pm
by miruna.lazar
Suma cifrelor numarului \( 10^{101} - 9 \) este... ?
Alegeti dintre variantele:
a) 92
b) 2
c) 12
d) 10
e) 901
Argumentati.
Posted: Sat Nov 08, 2008 9:58 pm
by Amaranth
1
0...0 (n) + 9 are suma de 1 + 0 + 1 * 0 + n * 0 + 10 - 9= 2
b...
Posted: Thu Nov 13, 2008 8:53 pm
by miruna.lazar
Incorect, Amaranth. Gandeste-te mai bine

!
Posted: Thu Nov 13, 2008 10:22 pm
by Amaranth
a... are o gramada de 9... deci ar fi 1999999999999999991(mai multi 90
10^101 deci.... ar fi 100000000000000 (101 0). is o gramada de 9 si chiar cred ca continui maine...

Posted: Fri Nov 14, 2008 8:31 pm
by miruna.lazar
Nu!!!!!!! Nu trebuie sa faci asa!!!!! Inmulteste!
Posted: Fri Nov 14, 2008 9:20 pm
by Dorobantu Razvan
\( 10^{101} \) e un 1 urmat de 101 zerouri.(102 cifre) Daca scadem 9 o sa de a un nr.: 9 de 100 de ori si 1(101 cifre)
adica:999999........9991. Deci, 9*100=900. 900+1=901. Raspuns, e.