Page 1 of 1
Arad 2001
Posted: Sun Nov 09, 2008 8:42 am
by alex2008
Sa se arate , fara a efectua adunarea , ca :\( \frac{1}{4}+\frac{1}{5}+\frac{1}{2\cdot4}+\frac{1}{2\cdot5}+\frac{1}{3\cdot4}+\frac{1}{3\cdot5}+\frac{1}{4\cdot4}+\frac{1}{5\cdot2}<2 \)
Posted: Tue Feb 24, 2009 8:12 pm
by Natalee
Sa incercam:
Dintre fractiile:
\( \ \ \frac{1}{4}; \ \ \frac{1}{2 \ \cdot \ 4}; \ \ \frac{1}{3 \ \cdot \ 4}; \ \ \frac{1}{4 \ \cdot \ 4 } \), valoarea cea mai mare o are
\( \ \frac{1}{4} \)
Dintre fractiile:
\( \ \ \frac{1}{5}; \ \ \frac{1}{2 \ \cdot \ 5}; \ \ \frac{1}{3 \ \cdot \ 5}; \ \ \frac{1}{5 \ \cdot \ 2} \), valoarea cea mai mare o are
\( \ \frac{1}{5} \).
Notam:
\( S \ = \ \frac{1}{4} \ + \ \frac{1}{5} \ + \ \frac{1}{2 \ \cdot \ 4} \ + \ \frac{1}{2 \ \cdot \ 5} \ + \ \frac{1}{3 \ \cdot \ 4} \ + \ \frac{1}{3 \ \cdot \ 5} \ + \ \frac{1}{4 \ \cdot \ 4} \ + \ \frac{1}{5 \ \cdot \ 2} \)
\( S_{_{_{1}}} \ = \ \frac{1}{4} \ + \ \frac{1}{5} \ + \ \frac{1}{4} \ + \ \frac{1}{5} \ + \ \frac{1}{4} \ + \ \frac{1}{5} \ + \ \frac{1}{4} \ + \ \frac{1}{5} \)
In aceasta situatie:
\( S \ < \ S_{_{_{1}}} \)
Calculam
\( \ S_{_{_{1}}} \):
\( S_{_{_{1}}} \ = \ 4 \ \cdot \ \frac{1}{4} \ + \ 4 \ \cdot \ \frac{1}{5} \ = \ 1 \ + \ \frac{4}{5} \ = \ \frac{9}{5} \ < \ 2; \ \ \ cum \ S \ < \ S_{_{_{1}}} \ = > \ S \ < \ 2 \)
