Page 1 of 1
Relatia lui Van Aubel
Posted: Sat Nov 15, 2008 11:08 am
by alex2008
Intr-un triunghi ABC cu masura unghiului A de 90 de grade , demonstrati ca pentru orice punct \( M \in (BC) \) are loc relatia lui Van Aubel :
\( AB^2\cdot{MC^2}+AC^2\cdot{MB^2}=BC^2\cdot{MA^2} \)
Posted: Fri Apr 17, 2009 12:20 pm
by Andi Brojbeanu
Folosim teorema lui Stewart: \( AM^2 \)\( \cdot \)\( BC=AB^2 \)\( \cdot \)\( MC+AC^2 \)\( \cdot \)\( MB-BC\cdot \)\( BM\cdot \)\( MC \).
Inmultind relatia cu BC, obtinem in membrul stang \( BC^2\cdot \)\( MA^2 \), si pentru ca relatia lui Van Aubel in triunghiul dreptunghic sa fie adevarata, trebuie demonstrata egalitatea dintre membrul drept al relatiei obtinute si membrul drept al relatiei lui Van Aubel:
\( AB^2\cdot \)\( MC^2 \)\( +AC^2\cdot \)\( MB^2 \)\( =AB^2\cdot \)\( MC\cdot \)\( BC \)\( +AC^2\cdot \)\( MB\cdot \)\( BC \)\( -BC^2\cdot \)\( BM\cdot \)\( MC \).
Dar in triunghiul dreptunghic, \( BC^2=AB^2+AC^2 \), si atunci egalitatea devine: \( AB^2\cdot \)\( MC^2 \)\( +AC^2\cdot \)\( MB^2 \)\( =AB^2\cdot \)\( MC\cdot \)\( BC \)\( -AB^2\cdot \)\( BM\cdot \)\( MC \)\( +AC^2\cdot \)\( MB\cdot \)\( BC \)\( -AC^2\cdot \)\( BM\cdot \)\( MC \)
\( AB^2\cdot \)\( MC^2 \)\( +AC^2\cdot \)\( MB^2 \)\( =AB^2\cdot \)\( MC(BC-MB) \)\( +AC^2\cdot \)\( MB(BC-MC) \).
\( AB^2\cdot \)\( MC^2 \)\( +AC^2\cdot \)\( MB^2 \)\( =AB^2\cdot \)\( MC^2 \)\( +AC^2\cdot \)\( MB^2 \), adevarat, deci relatia lui Van Aubel este verificata.
Posted: Mon Apr 20, 2009 4:52 am
by Virgil Nicula
Notam \( \phi=m(\angle MAB) \) . Se observa ca \( \left\|\begin{array}{c}
\frac {MB}{MA}=\frac {\sin\phi}{\sin B}=\frac {a\cdot\sin\phi}{b}\\\\\\\\\
\frac {MC}{MA}=\frac {\cos\phi}{\sin C}=\frac {a\cdot\cos\phi}{c}\end{array}\right\| \) .
Acum identitatea "Van Aubel" este evidenta, adica \( c^2\cdot \left(\frac {MC}{MA}\right)^2+b^2\cdot\left(\frac {MB}{MA}\right)^2=a^2 \) .
Observatie. Se stie (incercati sa demonstrati !) relatia lui Ptolemeu generalizata la un patrulater convex oarecare \( ABCD \) :
\( \underline {\overline{\left\|\ AC^2\cdot BD^2=AB^2\cdot CD^2+AD^2\cdot BC^2-2\cdot AB\cdot BC\cdot CD\cdot DA\cdot\cos (A+C)\ \right\|}} \) .
Cazuri particulare.
1. Daca \( A+C=180^{\circ} \) , adica \( ABCD \) este inscriptibil , atunci \( AC\cdot BD=AB\cdot CD+AD\cdot BC \) (relatia lui Ptolemeu).
2. Daca \( A+C\in\left\{90^{\circ}\ ,\ 270^{\circ}\right\} \) , atunci \( AC^2\cdot BD^2=AB^2\cdot CD^2+AD^2\cdot BC^2 \) .
3. Problema propusa este cazul particular precedent aplicat patrulaterului convex degenerat \( ABMC \) , unde
\( A=90^{\circ} \) si \( M\in (BC) \) , adica \( m(\angle BMC)=180^{\circ} \) : \( AB^2\cdot MC^2+AC^2\cdot MB^2=BC^2\cdot AM^2 \) .