Aplicatie CBS II
Posted: Mon Nov 17, 2008 11:28 am
Sa se arate ca \( \{m,a,b,c\}\subset\[0,\infty\)\ \Longrightarrow\ \prod_{\mathrm {cic}}\ \left(b^2+c^2+mbc\right)\ \ge\ abc\ \cdot\ \prod_{\mathrm {cic}}\ \left(b+c+m\sqrt {bc}\right) \) .
Remarca. Pentru m:=0 sau m:=2 se obtine inegalitatea de aici .
In general, \( \{m,n,p,a,b,c\}\subset\left[0,\infty\right)\ \Longrightarrow\ \prod_{\mathrm {cic}}\ \left(b^2+c^2+mbc\right)\ \ge\ abc\ \cdot\ \prod_{\mathrm {cic}}\ \left(b+c+\sqrt {npbc}\right) \) .
Remarca. Pentru m:=0 sau m:=2 se obtine inegalitatea de aici .
In general, \( \{m,n,p,a,b,c\}\subset\left[0,\infty\right)\ \Longrightarrow\ \prod_{\mathrm {cic}}\ \left(b^2+c^2+mbc\right)\ \ge\ abc\ \cdot\ \prod_{\mathrm {cic}}\ \left(b+c+\sqrt {npbc}\right) \) .