O inegalitate interesanta intr-un triunghi.

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

O inegalitate interesanta intr-un triunghi.

Post by Virgil Nicula »

Pentru un triunghi \( ABC \) notam \( \left\|\ \begin{array}{c}
A=(b+c)(c+a)(a+b)-8abc\\\\
B=abc-(b+c-a)(c+a-b)(a+b-c)\end{array}\ \right\| \)
.

Se arata usor ca \( A\ge 0 \) si \( B\ge 0 \) . Sa se arate ca \( A\ge B\ge 0 \) , adica inegalitatea

\( \prod (b+c)+\prod (b+c-a)\ge 9abc \) (Virgil Nicula & Cosmin Pohoata, Mathematical Reflections).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notand a=x+y b=x+z , c=x+y inegaitatea este echivalenta cu

\( (2x+y+z)(2y+z+x)(2z+x+y)+8xyz\ge 9(x+y)(y+z)(z+x) \)

sau cu s=x+y+z

\( (s+x)(s+y)(s+z)+8xyz\ge 9(s-x)(s-y)(s-z) \)

sau \( s^3+9xyz\ge 4s(xy+yz+zx) \) care este inegalitatea lui Schur sub alta forma.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Se poate arata ceva mai frumos :

\( \underline{\overline{\left\|\ 9abc\ \le\ \prod (b+c)+\prod (b+c-a)\ \le\ (a+b+c)(ab+bc+ca)\ \right\|}}\ . \)
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

Post by maxim bogdan »

Virgil Nicula wrote:Se poate arata ceva mai frumos :

\( \underline{\overline{\left\| \prod (b+c)+\prod (b+c-a)\ \le\ (a+b+c)(ab+bc+ca)\ \right\|}}\ . \)
Lasam notatiile cele stabilite de domnul profesor Marius Mainea.

Inegalitatea va fi echivalenta cu:

\( \prod (s+x)+8xyz\leq 2s(s^2 +\sum xy)\Longleftrightarrow \)

\( \Longleftrightarrow s^3 +s(\sum xy)+s^3 +9xyz\leq 2s^3 +2s(\sum xy)\Longleftrightarrow \)

\( \Longleftrightarrow 9xyz\leq (x+y+z)(xy + yx+ xz)\Longleftrightarrow \)

\( \Longleftrightarrow z(x-y)^2 +x(y-z)^2 +y(z-x)^2 \geq 0. \)
Feuerbach
Post Reply

Return to “Clasa a IX-a”